OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 16, Iss. 10 — Oct. 1, 1999
  • pp: 1824–1832

Linear optical properties of gold nanoshells

Richard D. Averitt, Sarah L. Westcott, and Naomi J. Halas  »View Author Affiliations

JOSA B, Vol. 16, Issue 10, pp. 1824-1832 (1999)

View Full Text Article

Acrobat PDF (358 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A metal nanoshell consists of a nanometer-scale dielectric core surrounded by a thin metallic shell. The plasmon resonance of metal nanoshells displays a geometric tunability controlled by the ratio of the core radius to the total radius. For gold-coated Au<sub>2</sub>S this ratio varies from 0.6 to 0.9, yielding a plasmon resonance tunable from 600 to greater than 1000 nm. Mie scattering theory for the nanoshell geometry quantitatively accounts for the observed plasmon resonance shifts and linewidths. In addition, the plasmon linewidth is shown to be dominated by electron surface scattering.

© 1999 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(260.5740) Physical optics : Resonance
(290.3700) Scattering : Linewidth
(290.4020) Scattering : Mie theory

Richard D. Averitt, Sarah L. Westcott, and Naomi J. Halas, "Linear optical properties of gold nanoshells," J. Opt. Soc. Am. B 16, 1824-1832 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, New York, 1995).
  2. P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir 12, 788–800 (1996).
  3. U. Kreibig, M. Gartz, and A. Hilger, “Mie resonances: sensors for physical and chemical cluster interface properties,” Ber. Bunsenges. Phys. Chem. 101, 1593–1604 (1997).
  4. R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science 277, 1078–1081 (1997).
  5. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
  6. R. Antoine, P. F. Brevet, H. H. Girault, D. Bethell, and D. J. Schiffrin, “Surface plasmon enhanced non-linear optical response of gold nanoparticles at the air/toluene interface,” J. Chem. Soc. Chem. Commun. 1901–1902 (1997).
  7. D. Ricard, P. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett. 10, 511–513 (1985).
  8. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system,” J. Chem. Soc. Chem. Commun. 801–802 (1994).
  9. R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
  10. R. P. Andres, J. D. Bielefeld, J. I. Henderson, D. B. Janes, V. R. Kolagunta, C. P. Kubiak, W. J. Mahoney, and R. G. Osifchin, “Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters,” Science 273, 1690–1693 (1996).
  11. C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, and J. R. Heath, “Reversible tuning of silver quantum dot monolayers through the metal-insulator transition,” Science 277, 1978–1981 (1997).
  12. H. R. Stuart and D. G. Hall, “Enhanced dipole–dipole interaction between elementary radiators near a surface,” Phys. Rev. Lett. 80, 5663–5666 (1998).
  13. T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, and M. A. El-Sayed, “Shape-controlled synthesis of colloidal platinum nanoparticles,” Science 272, 1924–1926 (1996).
  14. A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951).
  15. A. E. Neeves and M. H. Birnboim, “Composite structures for the enhancement of nonlinear-optical susceptibility,” J. Opt. Soc. Am. B 6, 787–796 (1989).
  16. H. S. Zhou, I. Honma, H. Komiyama, and J. W. Haus, “Controlled synthesis and quantum-size effect in gold-coated nanoparticles,” Phys. Rev. B 50, 12052–12056 (1994).
  17. R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78, 4217–4220 (1997).
  18. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
  19. A. J. Bard, R. Parsons, and J. Jordan, eds., Standard Potentials in Aqueous Solution (Marcel Dekker, New York, 1985).
  20. G. Schmid and A. Lehnert, “The complexation of gold colloids,” Angew. Chem. Int. Ed. Engl. 28, 780–781 (1989).
  21. The size distribution was determined with Image Tool for Windows, version 1.28, from the University of Texas Health Sciences Center at San Antonio.
  22. G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 25, 377–445 (1908).
  23. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
  24. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).
  25. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  26. D. Sarkar, “Vector basis function solution of Maxwell’s equations,” Ph.D. dissertation (Rice University, Houston, Texas, 1996).
  27. D. Sarkar and N. J. Halas, “General vector basis function solution of Maxwell’s equations,” Phys. Rev. E 56, 1102–1112 (1997).
  28. J. W. Haus, H. S. Zhou, S. Takami, M. Hirasawa, I. Honma, and H. Komiyama, “Enhanced optical properties of metal-coated nanoparticles,” J. Appl. Phys. 73, 1043–1048 (1993).
  29. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  30. Au2S is a direct bandgap semiconductor with Eg in the range from 1.3 to 2.6 eV, O. Jepsen, Max-Planck-Institute for Solid State Research, D-7000 Stuttgart 80, Germany (personal communication, 1996).
  31. J. I. Pankove, Optical Processes in Semiconductors (Dover, New York, 1975).
  32. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
  33. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders, Philadelphia, 1976).
  34. H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
  35. U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,” Surf. Sci. 156, 678–700 (1985).
  36. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
  37. H. Metiu, “Surface enhanced spectroscopy,” Prog. Surf. Sci. 17, 153–320 (1984).
  38. S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, “Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates,” J. Chem. Phys. (to be published).
  39. F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys. A 47, 347–357 (1988).
  40. J. W. Haus, N. Kalyaniwalla, R. Inguva, M. Bloemer, and C. M. Bowden, “Nonlinear-optical properties of conductive spheroidal particle composites,” J. Opt. Soc. Am. B 6, 797–807 (1989).
  41. S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, “Light scattering from dipole and quadrupole nanoshell antennas,” Appl. Phys. Lett. (to be published).
  42. U. Kreibig, “The transition cluster–solid state in small gold particles,” Solid State Commun. 28, 767–769 (1978).
  43. R. D. Averitt, S. L. Westcott, and N. J. Halas, “Ultrafast electron dynamics in gold nanoshells,” Phys. Rev. B 58, 10203–10206 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited