OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 16, Iss. 11 — Nov. 1, 1999
  • pp: 1868–1873

Fluorescence image of a single molecule in a microsphere: model

Steven C. Hill, Paul Nachman, Stephen Arnold, J. Michael Ramsey, and Michael D. Barnes  »View Author Affiliations

JOSA B, Vol. 16, Issue 11, pp. 1868-1873 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (273 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We model fluorescence images of single molecules in spherical dielectric microcavities. Molecules are treated as time-harmonic dipoles. Images are integrated over emission frequencies. Because of the strong refractive properties of the enclosing sphere, the fluorescence image depends on the refractive index of the sphere and the position, the orientation, and the emission frequency of the molecule. When the dipole’s emission is at the frequency of a microsphere resonance, the brightest regions in the images appear to originate from outside the sphere for some dipole positions. This type of calculation should help in interpreting images of molecules in microspheres.

© 1999 Optical Society of America

OCIS Codes
(180.2520) Microscopy : Fluorescence microscopy
(190.3970) Nonlinear optics : Microparticle nonlinear optics
(260.2110) Physical optics : Electromagnetic optics
(260.5740) Physical optics : Resonance
(290.5850) Scattering : Scattering, particles

Steven C. Hill, Paul Nachman, Stephen Arnold, J. Michael Ramsey, and Michael D. Barnes, "Fluorescence image of a single molecule in a microsphere: model," J. Opt. Soc. Am. B 16, 1868-1873 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. M. Dickson, D. J. Norris, Y.-L. Tzeng, and W. E. Moerner, “Three-dimensional imaging of single molecules solvated in pores of poly(acrylamide) gels,” Science 274, 966–969 (1996). [CrossRef] [PubMed]
  2. J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Imaging and time-resolved spectroscopy of single molecules at an interface,” Science 272, 255–258 (1996). [CrossRef]
  3. W. E. Moerner and M. Orrit, “Illuminating single molecules in condensed matter,” Science 283, 1670–1676 (1999). [CrossRef] [PubMed]
  4. D. J. Norris, M. Kuwata-Gonokami, and W. E. Moerner, “Excitation of a single molecule on the surface of a spherical microcavity,” Appl. Phys. Lett. 71, 297–299 (1997). [CrossRef]
  5. M. D. Barnes, K. C. Ng, K. P. McNamara, C.-Y. Kung, J. M. Ramsey, and S. C. Hill, “Fluorescence imaging of single molecules in polymer microspheres,” Cytometry 36, 169–175 (1999). [CrossRef] [PubMed]
  6. S.-X. Qian, J. B. Snow, H.-M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid–air interface by laser emission,” Science 231, 486–488 (1986). [CrossRef] [PubMed]
  7. J.-Z. Zhang, G. Chen, and R. K. Chang, “Pumping of stimulated Raman scattering by stimulated Brillouin scattering within a single liquid droplet: input laser linewidth effects,” J. Opt. Soc. Am. B 7, 108–115 (1990). [CrossRef]
  8. S. Arnold and L. M. Folan, “Microphotography of an electrodynamically levitated particle,” Proc. SPIE 1862, 218–222 (1993). [CrossRef]
  9. S. Arnold, S. Holler, and S. D. Druger, “Imaging enhanced energy transfer in a levitated aerosol particle,” J. Chem. Phys. 104, 7741–7748 (1996). [CrossRef]
  10. M. Winter and L. A. Melton, “Measurement of internal circulation in droplets using laser-induced fluorescence,” Appl. Opt. 29, 4574–4577 (1990). [CrossRef] [PubMed]
  11. S. R. Harris, W. R. Lempert, L. Hersch, C. L. Burcham, D. A. Saville, and R. B. Miles, “Quantitative measurements of internal circulation in droplets using flow tagging velocimetry,” AIAA J. 34, 449–454 (1996). [CrossRef]
  12. M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, and S. Holler, “Fluorescence of oriented molecules in a microcavity,” Phys. Rev. Lett. 76, 3931–3934 (1996). [CrossRef] [PubMed]
  13. J. A. Lock, “Theory of the observations made of high-order rainbows from a single water droplet,” Appl. Opt. 26, 5291–5298 (1987). [CrossRef] [PubMed]
  14. H. C. van de Hulst and R. T. Wang, “Glare points,” Appl. Opt. 30, 4755–4763 (1991). [CrossRef] [PubMed]
  15. S. A. Schaub, D. R. Alexander, and J. P. Barton, “Theoretical model of the laser imaging of small aerosols: applications to aerosol sizing,” Appl. Opt. 30, 4777–4784 (1991). [CrossRef] [PubMed]
  16. S. Arnold, S. Holler, J. H. Li, A. Serpenguzel, W. F. Auffermann, and S. C. Hill, “Aerosol particle microphotography and glare-spot absorption spectroscopy,” Opt. Lett 20, 773–775 (1995). [CrossRef] [PubMed]
  17. S. A. Schaub, D. R. Alexander, and J. P. Barton, “Glare spot image calculations for a spherical particle illuminated by a tightly focused beam,” J. Opt. Soc. Am. A 9, 316–330 (1992). [CrossRef]
  18. J. Zhang and L. A. Melton, “Numerical simulations and restorations of laser droplet-slicing images,” Appl. Opt. 334, 192–200 (1990).
  19. R. K. Chang and A. J. Campillo, Optical Processes in Microcavities (World Scientific, Singapore, 1996).
  20. M. D. Barnes, W. B. Whitten, S. Arnold, and J. M. Ramsey, “Homogeneous linewidths of rhodamine 6G at room temperature from cavity enhanced spontaneous emission rates,” J. Chem. Phys. 97, 7842–7845 (1992). [CrossRef]
  21. H.-B. Lin, J. D. Eversole, C. D. Merrit, and A. J. Campillo, “Cavity-modified spontaneous emission rates in liquid microdroplets,” Phys. Rev. A 45, 6756–6760 (1992). [CrossRef] [PubMed]
  22. N. Lermer, M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, and S. C. Hill, “Spatial photoselection of single molecules on the surface of a spherical microcavity,” Opt. Lett. 23, 951–953 (1998). [CrossRef]
  23. C.-Y. Kung, M. D. Barnes, N. Lermer, W. B. Whitten, and J. M. Ramsey, “Single molecule analysis of ultradilute solutions with guided streams of 1-μm water droplets,” Appl. Opt. 38, 1481–1487 (1999). [CrossRef]
  24. H. Chew, P. J. McNulty, and M. Kerker, “Model for Raman and fluorescent scattering by molecules embedded in small particles,” Phys. Rev. A 13, 396–404 (1976). [CrossRef]
  25. S. C. Hill, H. I. Saleheen, M. D. Barnes, W. B. Whitten, and J. M. Ramsey, “Modeling fluorescence collection from single molecules in microspheres: effects of position, orientation, and frequency,” Appl. Opt. 35, 6278–6288 (1996). [CrossRef] [PubMed]
  26. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1998), p. 128.
  27. C. R. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), p. 89.
  28. P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990), p. 84.
  29. We obtain this Green function by rewriting Eq. (A7) of Ref. 25, eliminating fvG, gνG, cvH, and dvH using Eqs. (A4), (A5), (A10), and (A11), and eliminating the integral over source points.
  30. The advantage of choosing the z axis to pass through the dipole, and thereby limiting the required m to 0 and 1, is that it provides a way to obtain images for relatively large spheres without computation of the angular functions and coefficients for all m up to n (and without exceeding the available computer storage if these are saved). The disadvantage is that it requires more manipulation and coordinate transformations afterward.
  31. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999), p. 484.
  32. J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989). [CrossRef]
  33. E. E. M. Khaled, S. C. Hill, P. W. Barber, and D. Q. Chowdhury, “Near-resonance excitation of morphology dependent resonances with plane waves and off-axis Gaussian beams,” Appl. Opt. 31, 1166–1169 (1992). [CrossRef] [PubMed]
  34. J. A. Lock, “Excitation efficiency of a morphology-dependent resonance by a focused Gaussian beam,” J. Opt. Soc. Am. A 15, 2986–2994 (1998). [CrossRef]
  35. H.-B. Lin, J. D. Eversole, A. J. Campillo, and J. P. Barton, “Excitation localization principle for spherical microcavities,” Opt. Lett. 23, 1921–1923 (1998). [CrossRef]
  36. S. C. Hill, G. Videen, and J. D. Pendleton, “Reciprocity method for obtaining the far fields generated by a source inside or near a scattering object,” J. Opt. Soc. Am. B 14, 2522–2529 (1997). [CrossRef]
  37. N. Velesco and G. Schweiger, “Geometrical optics calculations of inelastic scattering on large particles,” Appl. Opt. 38, 1046–1052 (1999). [CrossRef]
  38. If m=1 (i.e., there is no sphere) and Θ=165°, then by the lens law the image plane should be at zL2=3.52 mm. The calculated images have spot sizes that do not vary markedly between zL 2 values of 2.5 and 4.5 mm.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited