OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 16, Iss. 11 — Nov. 1, 1999
  • pp: 1894–1903

Cascaded nonlinear phase shift in a novel anharmonic phase-mismatch configuration

G. Baldenberger, S. LaRochelle, and A. Villeneuve  »View Author Affiliations


JOSA B, Vol. 16, Issue 11, pp. 1894-1903 (1999)
http://dx.doi.org/10.1364/JOSAB.16.001894


View Full Text Article

Enhanced HTML    Acrobat PDF (184 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically analyze a new class of aperiodic phase mismatch. The phase-matching function that is chosen depends on the calculated second-harmonic amplitude generated in the device during the propagation of the fundamental beam at given input intensity and wavelength. We show that, in such a configuration, the fields evolve toward the eigenmodes of a χ(2) two-wave mixing process. Hence a constant pump and an enhanced nonlinear phase shift that grows linearly with propagation length are obtained. We also discuss the feasibility of this scheme that provides an alternative approach for the realization of optical switching devices or Kerr-effect compensators.

© 1999 Optical Society of America

OCIS Codes
(130.3730) Integrated optics : Lithium niobate
(190.0190) Nonlinear optics : Nonlinear optics
(230.4320) Optical devices : Nonlinear optical devices

Citation
G. Baldenberger, S. LaRochelle, and A. Villeneuve, "Cascaded nonlinear phase shift in a novel anharmonic phase-mismatch configuration," J. Opt. Soc. Am. B 16, 1894-1903 (1999)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-16-11-1894


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, and E. W. Van Stryland, “Self-focusing and self defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17, 28–30 (1992). [CrossRef] [PubMed]
  2. J. Khurgin, A. Obeidat, S. J. Lee, and Y. J. Ding, “Cascaded optical nonlinearities: microscopic understanding as a collective effect,” J. Opt. Soc. Am. B 14, 1977–1983 (1997). [CrossRef]
  3. P. St. J. Russell, “All optical high gain transistor action using second order nonlinearities,” Electron. Lett. 29, 1228–1229 (1993). [CrossRef]
  4. D. J. Hagan, Z. Wang, G. Stegeman, E. W. Van Stryland, M. Sheik-Bahae, and G. Assanto, “Phase-controlled transistor action by cascading of second-order nonlinearities in KTP,” Opt. Lett. 19, 1305–1307 (1994). [CrossRef] [PubMed]
  5. Y. Baek, R. Schiek, G. Stegeman, and G. Assanto, “All optical mode mixer spatial switch based on cascading in lithium niobate,” Appl. Phys. Lett. 72, 3405–3407 (1998). [CrossRef]
  6. Y. Baek, R. Schiek, G. Stegeman, G. Krinjnen, I. Baumann, and W. Sohler, “All-optical integrated Mac-Zehnder switching due to cascaded nonlinearities,” Appl. Phys. Lett. 68, 2055–2057 (1996). [CrossRef]
  7. G. Assanto, G. Stegeman, M. Sheik-Bahae, and E. W. Van Stryland, “All-optical switching devices based on large nonlinear phase shifts from second harmonic generation,” Appl. Phys. Lett. 62, 1323–1325 (1993). [CrossRef]
  8. C. Paré, A. Villeneuve, and S. LaRochelle, “Modulational instability in a communication link exploiting a negative nonlinearity for compensation of self phase modulation,” in Nonlinear Guided Waves and Their Applications, Vol. 5 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 86–88, paper NWE9–3.
  9. C. Paré, A. Villeneuve, P.-A. Bélanger, and N. J. Doran, “Compensating for dispersion and the nonlinear Kerr effect without phase conjugation,” Opt. Lett. 21, 459–461 (1996). [CrossRef] [PubMed]
  10. G. Stegeman, M. Sheik-Bahae, E. Van Stryland, and G. Assanto, “Large nonlinear phase shifts in second-order nonlinear-optical processes,” Opt. Lett. 18, 13–15 (1993). [CrossRef] [PubMed]
  11. G. Assanto, G. I. Stegeman, M. Sheik-Bahae, and E. W. Van Stryland, “Coherent interactions for all-optical signal processing via quadratic nonlinearities,” IEEE J. Quantum Electron. 31, 673–681 (1995). [CrossRef]
  12. A. E. Kaplan, “Eigenmodes of χ(2) wave mixings: cross-induced second-order nonlinear refraction,” Opt. Lett. 18, 1223–1225 (1993). [CrossRef] [PubMed]
  13. S. Trillo, S. Wabnitz, R. Chisari, and G. Cappellini, “Two-wave mixing in a quadratic nonlinear medium: bifurcations, spatial instabilities, and chaos,” Opt. Lett. 17, 637–639 (1992). [CrossRef] [PubMed]
  14. M. Cha, “Cascaded phase shift and intensity modulation in aperiodic quasi-phase-matched gratings,” Opt. Lett. 23, 250–252 (1998). [CrossRef]
  15. G. D. Landry and T. A. Maldonado, “Efficient nonlinear phase shifts due to cascaded second-order processes in a counterpropagating quasi-phase-matched configuration,” Opt. Lett. 22, 1400–1402 (1997). [CrossRef]
  16. Y. J. Ding and J. B. Khurgin, “Second-harmonic generation based on a quasi-phase matching: a novel configuration,” Opt. Lett. 21, 1445–1447 (1996). [CrossRef] [PubMed]
  17. K. Koynov and S. Saltiel, “Nonlinear phase shift via multistep χ(2) cascading,” Opt. Commun. 152, 96–100 (1998). [CrossRef]
  18. C. G. Trevinio-Palacios, D. Ortega, G. Stegeman, and J. S. Aitchison, “Spatial chirping of wavevector mismatch in lithium niobate segmented waveguide for engineering of specific second-harmonic generation detuning curves for cascading applications,” in Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 105–106, paper CtuJ2.
  19. Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, New York, 1984), pp. 87–93.
  20. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Peshan, “Interaction between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962). [CrossRef]
  21. H. Kestelman, Modern Theories of Integration, 2nd ed. (Dover, New York, 1959), pp. 30–66.
  22. L. Perko, Differential Equations and Dynamical Systems, 2nd ed. (Springer-Verlag, Berlin, 1996), pp. 70–79.
  23. L. E. Myers, R. C. Eckart, M. M. Fejer, and R. L Byer, “Quasi-phasematched optical parametric oscillators using bulk periodically poled lithium niobate,” in Solid State Lasers and Nonlinear Crystals, L. K. Cheng, L. Esterowitz, and G. J. Quarkes, eds., Proc. SPIE 2379, 154–163 (1995). [CrossRef]
  24. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First order quasi-phase matched waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993). [CrossRef]
  25. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Buer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992). [CrossRef]
  26. M. L. Bortz, M. Fujimura, and M. M. Fejer, “Increased acceptance bandwidth for quasi phase-matched second harmonic generation in LiNbO3 waveguide,” Electron. Lett. 30, 34–35 (1994). [CrossRef]
  27. Crystal Technology, Lithium Niobate. Optical Waveguide Substrate (Crystal Technology, Palo Alto, Calif., 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited