OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 16, Iss. 11 — Nov. 1, 1999
  • pp: 1936–1941

Curvature dynamics and stability of topological solitons in the optical parametric oscillator

J. Nathan Kutz, Thomas Erneux, Stefano Trillo, and Marc Haelterman  »View Author Affiliations


JOSA B, Vol. 16, Issue 11, pp. 1936-1941 (1999)
http://dx.doi.org/10.1364/JOSAB.16.001936


View Full Text Article

Acrobat PDF (356 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The first analytic verification of the stability of topological solitons corresponding to wave-front solutions of the optical parametric oscillator is given. A translational invariance allows perturbations to the system to shift the front position without affecting the underlying exponential stability of the fronts themselves. For the two-dimensional problem with a positive O(1) signal detuning, the front curvature is shown to be governed by a heat equation, so that the only stable topological solitons supported must be stripes.

© 1999 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.2640) Nonlinear optics : Stimulated scattering, modulation, etc.
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

Citation
J. Nathan Kutz, Thomas Erneux, Stefano Trillo, and Marc Haelterman, "Curvature dynamics and stability of topological solitons in the optical parametric oscillator," J. Opt. Soc. Am. B 16, 1936-1941 (1999)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-16-11-1936


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. N. Bloembergen, Nonlinear Optics (Benjamin, New York, 1965).
  2. See, for instance, the special issues on Optical Parametric Oscillation and Amplification, J. Opt. Soc. Am. B 10, 1655–1791 (1993) and Optical Parametric Devices, J. Opt. Soc. Am. B 12, 2083–2320 (1995).
  3. M. C. Cross and P. C. Hohenberg, “Pattern formation outside of equilibrium,” Rev. Mod. Phys. 65, 851–1112 (1993).
  4. G. L. Oppo, M. Brambilla, and L. A. Lugiato, “Formation and evolution of roll patterns in optical parametric oscillators,” Phys. Rev. A 49, 2028–2032 (1994).
  5. R. A. Fuerst, D. M. Baboiu, B. Lawrence, W. E. Torruellas, G. I. Stegeman, S. Trillo, and S. Wabnitz, “Spatial modulational instability and multisolitonlike generation in a quadratically nonlinear medium,” Phys. Rev. Lett. 78, 2756–2759 (1997).
  6. S. Longhi, “Localized structures in optical parametric oscillation,” Phys. Scr. 56, 611–618 (1997).
  7. K. Staliunas and V. J. Sánchez-Morcillo, “Localized structures in degenerate optical parametric oscillators,” Opt. Commun. 139, 306–312 (1997).
  8. S. Trillo, M. Haelterman, and A. Sheppard, “Stable topological spatial solitons in optical parametric oscillators,” Opt. Lett. 22, 970–972 (1997).
  9. K. Staliunas and V. J. Sánchez-Morcillo, “Spatial-localized structures in degenerate optical parametric oscillators,” Phys. Rev. A 57, 1454–1457 (1998).
  10. S. Longhi, “Spatial solitary waves in nondegenerate optical parametric oscillators near an inverted bifurcation,” Opt. Commun. 149, 335–340 (1998).
  11. M. Santagiustina, P. Colet, M. San Miguel, and D. Walgraef, “Walk-off and pattern selection in optical parametric oscillators,” Opt. Lett. 23, 1167–1169 (1998).
  12. S. Trillo and M. Haelterman, “Excitation and bistability of self-trapped signal beams in optical parametric oscillators,” Opt. Lett. 23, 1514–1516 (1998).
  13. M. Tidli, P. Mandel, and R. Lefever, “Kinetics of localized pattern formation in optical systems,” Phys. Rev. Lett. 81, 979–982 (1998).
  14. C. Etrich, U. Peschel, and F. Lederer, “Solitary waves in quadratically nonlinear resonators,” Phys. Rev. Lett. 79, 2454–2457 (1997).
  15. N. N. Rozanov, in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1996), Vol. 35, pp. 1–60.
  16. K. Staliunas and V. J. Sánchez-Morcillo, “Dynamics of phase domains in the Swift–Hohenberg equation,” Phys. Lett. A 241, 28–31 (1998).
  17. P. Coullet, L. Gil, and D. Repaux, “Defects and subcritical bifurcations,” Phys. Rev. Lett. 62, 2957–2960 (1989).
  18. V. B. Tarenko, K. Staliunas, and C. O. Weiss, “Pattern formation and localized structures in degenerate optical parametric mixing,” Phys. Rev. Lett. 81, 2236–2239 (1998).
  19. C. Richy, K. I. Petsas, E. Giacobino, and C. Fabre, “Observation of bistability and delayed bifurcation in a triply resonant optical parametric oscillators,” J. Opt. Soc. Am. B 12, 456–461 (1995).
  20. G. L. Oppo, A. J. Scroggie, and W. J. Firth, “Stabilization of domain walls in optical parametric oscillators,” special issue on Pattern Formation in Nonlinear Optical System, Quant. Semiclass. Opt. 1, 133–138 (1999).
  21. B. Friedman, Principles and Techniques of Applied Mathematics (Dover, New York, 1990), Chap. 1.
  22. G. T. Dee and W. Van Sarloos, “Bistable system with propagating fronts leading to pattern formation,” Phys. Rev. Lett. 60, 2641–2644 (1988).
  23. M. Weinstein, “Modulational stability of ground states of nonlinear Schrödinger equation,” SIAM (Soc. Ind. Appl. Math.) J. Math. Anal. 16, 472–491 (1985).
  24. J. N. Kutz and W. L. Kath, “Stability of pulses in nonlinear optical fibers using phase-sensitive amplifiers,” SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 56, 611–626 (1996).
  25. D. Gruner, R. Kapral, and A. Lawniczak, “Nucleation, domain growth and fluctuations in a bistable chemical system,” J. Chem. Phys. 99, 3938–3945 (1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited