OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 16, Iss. 11 — Nov. 1, 1999
  • pp: 1999–2004

Dispersion-managed mode locking

Y. Chen, F. X. Kärtner, U. Morgner, S. H. Cho, H. A. Haus, E. P. Ippen, and J. G. Fujimoto  »View Author Affiliations

JOSA B, Vol. 16, Issue 11, pp. 1999-2004 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (262 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The pulse shape and spectrum of ultrashort-pulse Ti:sapphire mode-locked lasers are explained by a model akin to dispersion-managed pulse propagation of optical communications. The pulse is characterized as a nonlinear Bloch wave in a periodic structure. The ultimate spectral width is limited by dispersion and mirror bandwidth and less strongly by gain filtering. The main role of Kerr-lens mode locking is to provide stability against noise buildup. One-dimensional computer simulations are sufficient to explain the major pulse-shaping dynamics. Results are compared with experiment.

© 1999 Optical Society of America

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(140.3590) Lasers and laser optics : Lasers, titanium
(320.5550) Ultrafast optics : Pulses
(320.7090) Ultrafast optics : Ultrafast lasers
(320.7160) Ultrafast optics : Ultrafast technology

Y. Chen, F. X. Kärtner, U. Morgner, S. H. Cho, H. A. Haus, E. P. Ippen, and J. G. Fujimoto, "Dispersion-managed mode locking," J. Opt. Soc. Am. B 16, 1999-2004 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. A. Haus, “Theory of mode locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049–3058 (1975). [CrossRef]
  2. O. E. Martinez, R. L. Fork, and J. P. Gordon, “Theory of passively mode-locked lasers for the case of a nonlinear complex propagation coefficient,” J. Opt. Soc. Am. B 2, 753–760 (1985). [CrossRef]
  3. L. F. Mollenauer and R. H. Stolen, “The soliton laser,” Opt. Lett. 9, 13–15 (1984). [CrossRef] [PubMed]
  4. J. D. Kafka, T. Bear, and D. Wiltall, “Mode-locked erbium-doped fiber laser with soliton pulse shaping,” Opt. Lett. 14, 1269–1271 (1989). [CrossRef] [PubMed]
  5. I. Smith, E. T. Geer, R. Wyatt, P. Wheatley, and N. T. Doran, “Totally integrated erbium fiber soliton laser pumped by a laser diode,” Electron. Lett. 27, 244–245 (1990). [CrossRef]
  6. M. T. Guy, D. U. Noske, and T. R. Taylor, “Generation of femtosecond soliton pulses by passive mode locking of an ytterbium–erbium figure-of-eight fiber laser,” Opt. Lett. 18, 1447–1449 (1993). [CrossRef] [PubMed]
  7. N. Pandit, D. U. Woske, S. M. J. Kelly, and J. R. Taylor, “Characteristic instability of fiber loop soliton lasers,” Electron. Lett. 28, 455–456 (1992). [CrossRef]
  8. D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16, 42–44 (1991). [CrossRef] [PubMed]
  9. U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Sub-two cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,” Opt. Lett. 24, 411–413 (1999). [CrossRef]
  10. J. Zhou, G. Taft, C.-P. Huang, M. M. Murnane, H. C. Kapteyn, and I. P. Christov, “Pulse evolution in a broad-bandwidth Ti:sapphire laser,” Opt. Lett. 19, 1149–1151 (1994). [CrossRef] [PubMed]
  11. L. Xu, C. Spielmann, F. Krausz, and R. Szipöcs, “Ultrabroadband ring oscillator for sub-10-fs pulse generation,” Opt. Lett. 21, 1259–1261 (1996). [CrossRef] [PubMed]
  12. I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, G. Zhang, U. Keller, V. Scheuer, M. Tilsch, and T. Tschudi, “Self-starting 6.5 fs pulses from a Ti:sapphire laser,” Opt. Lett. 22, 1009–1011 (1997). [CrossRef] [PubMed]
  13. I. P. Christov, M. M. Murnane, H. C. Kapteyn, J. Zhou, and C.-P. Huang, “Fourth-order dispersion-limited solitary pulses,” Opt. Lett. 19, 1465–1467 (1994). [CrossRef] [PubMed]
  14. C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroadband femtosecond lasers,” IEEE J. Quantum Electron. 30, 1100–1102 (1994). [CrossRef]
  15. S. T. Cundiff, W. H. Knox, E. P. Ippen, and H. A. Haus, “Frequency-dependent mode size in broadband Kerr-lens mode locking,” Opt. Lett. 21, 662–664 (1996). [CrossRef] [PubMed]
  16. I. P. Christov, H. C. Kapteyn, M. M. Murnane, Ch.-P. Huang, and J. Zhou, “Space–time focusing of femtosecond pulses in a Ti:sapphire laser,” Opt. Lett. 20, 309–311 (1995). [CrossRef] [PubMed]
  17. I. P. Christov, V. D. Stoev, M. M. Murnane, and H. C. Kapteyn, “Sub-10 fs operation of Kerr-lens mode-locked lasers,” Opt. Lett. 21, 1493–1495 (1996). [CrossRef] [PubMed]
  18. I. P. Christov and V. D. Stoev, “Kerr-lens mode-locked laser model: role of space–time effects,” J. Opt. Soc. Am. B 15, 1960–1966 (1998). [CrossRef]
  19. V. P. Kalosha, M. Müller, J. Herrmann, and S. Gatz, “Spatiotemporal model of femtosecond pulse generator in a Kerr-lens mode-locked solid-state laser,” J. Opt. Soc. Am. B 15, 535–550 (1998). [CrossRef]
  20. H. A. Haus and J. G. Fujimoto, “Structures for additive pulse mode locking,” J. Opt. Soc. Am. B 8, 2068–2076 (1991). [CrossRef]
  21. F. X. Kärtner, J. Aus des Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers—what’s the difference?,” IEEE J. Sel. Top. Quantum Electron. 4, 159–168 (1998). [CrossRef]
  22. E. P. Ippen, “Principles of passive mode locking,” Appl. Phys. B 58, 159–170 (1994). [CrossRef]
  23. H. A. Haus and Y. Chen, “Dispersion managed solitons as nonlinear Bloch waves,” J. Opt. Soc. Am. B 16, 889–894 (June 1999). [CrossRef]
  24. T. H. B. Nijhof, N. T. Doran, W. Forysiak, and F. M. Knox, “Stable soliton-like propagation in dispersion managed systems with net anomalous, zero and normal dispersion,” Electron. Lett. 23, 1726–1727 (1997). [CrossRef]
  25. Y. Chen and H. A. Haus, “Dispersion-managed solitons in the net positive dispersion regime,” J. Opt. Soc. Am. B 16, 24–30 (1999). [CrossRef]
  26. F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Schener, M. Tilsch, and T. Tschudi, “Design and fabrication of double-chirped mirrors,” Opt. Lett. 22, 831–833 (1997). [CrossRef] [PubMed]
  27. N. Matuschek, F. X. Kärtner, and U. Keller, “Theory of double-chirped mirrors,” IEEE J. Sel. Top. Quantum Electron. 4, 197–208 (1998). [CrossRef]
  28. V. Scheuer, M. Tilsch, and T. Tschudi, “Reduction of absorption losses in ion beam spattered deposition of optical coatings for the visible and near-infrared,” in Optical Interference Coatings, F. Abeles, ed., Proc. SPIE 2253, 445–454 (1994). [CrossRef]
  29. M. Tilsch, V. Schener, J. Staub, and T. Tschudi, “Direct optical monitoring instrument with a double detection system for the control of multi-layer systems from the visible to the near-infrared,” in Optical Interference Coatings, F. Abeles, ed., Proc. SPIE 2253, 414–422 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited