OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 16, Iss. 11 — Nov. 1, 1999
  • pp: 2015–2022

Spatiotemporal emission dynamics of ridge waveguide laser diodes: picosecond pulsing and switching

M. O. Ziegler, M. Münkel, T. Burkhard, G. Jennemann, I. Fischer, and W. Elsässer  »View Author Affiliations

JOSA B, Vol. 16, Issue 11, pp. 2015-2022 (1999)

View Full Text Article

Acrobat PDF (288 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the observation of spatiotemporal dynamics on picosecond time scales for an antireflection-coated ridge waveguide laser diode that is only 5 μm wide. Depending on the applied current, three dynamic regimes can be distinguished, showing the transition from regular to irregular spatiotemporal emission. We discuss the underlying mechanisms and develop a comprehensive understanding of this dynamic behavior. First, for moderate pumping, we find a typical relaxation oscillation behavior of the fundamental lateral mode. Second, at intermediate current levels, we observe lateral high-frequency switching of the output intensity between the left-hand and the right-hand parts of the active region. The switching frequency increases linearly with the excitation current and is of the order of 10 GHz. We give evidence that this switching behavior results from the coexistence and interaction of fundamental and first-order lateral modes that belong to different longitudinal mode families. The observed dependence of the switching frequency on the bias current can be attributed to a change in the width of the emission profile. Third, at high pumping levels, irregular spatiotemporal dynamics with the coexistence of low- and high-frequency spatial switching and temporal pulsations can be found. Finally, the influence of waveguide design and consequences for applications are considered and discussed.

© 1999 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.2020) Lasers and laser optics : Diode lasers
(140.5960) Lasers and laser optics : Semiconductor lasers
(320.5390) Ultrafast optics : Picosecond phenomena

M. O. Ziegler, M. Münkel, T. Burkhard, G. Jennemann, I. Fischer, and W. Elsässer, "Spatiotemporal emission dynamics of ridge waveguide laser diodes: picosecond pulsing and switching," J. Opt. Soc. Am. B 16, 2015-2022 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. P. Savolainen, M. Toivonen, H. Asonen, M. Pessa, and R. Murison, “High-performance 980-nm strained-layer GaInAs–GaInAsP–GaInP quantum-well lasers grown by all solid-source molecular-beam epitaxy,” IEEE Photon. Technol. Lett. 8, 986–988 (1996).
  2. H. Asonen, A. Ovtchinnikov, G. Zhang, J. N. Näppi, P. Savolainen, and M. Pessa, “Aluminum-free 980-nm GaInAs/GaInAsP/GaInP pump lasers,” IEEE J. Quantum Electron. 30, 415–423 (1994).
  3. M. Toivonen, M. Jalonen, A. Salokatve, J. N. Näppi, P. Savolainen, M. Pessa, and H. Asonen, “All solid source molecular beam epitaxy growth of strained layer InGaAs/GaInAsP/GaInP quantum well lasers (λ=980 nm),” Appl. Phys. Lett. 67, 2332–2334 (1995).
  4. M. Ohkubo, T. Ijichi, A. Iketani, and T. Kikuta, “980-nm aluminum-free InGaAs/InGaAsP/InGaP GRINSCH SL-SQW lasers,” IEEE J. Quantum Electron. 30, 408–414 (1994).
  5. T. Ijichi, M. Ohkubo, N. Matsumoto, and H. Okamoto, “High-power cw operation of aluminum-free InGaAs/GaAs/InGaP strained layer single quantum well ridge waveguide lasers,” in Proceedings of the 12th IEEE International Semiconductor Laser Conference (IEEE, Piscataway, N.J., 1990), pp. 44–45.
  6. J. Hashimoto, I. Yoshida, M. Murata, and T. Katsuyama, “Aging time dependence of catastrophic optical damage (COD) failure of a 0.98-μm GaInAs–GaInP strained quantum-well laser,” IEEE J. Quantum Electron. 33, 66–70 (1997).
  7. M. Pessa, J. Näppi, G. Zhang, A. Ovtchinnikov, and H. Asonen, “Aluminum-free 980-nm laser diodes,” Mater. Sci. Eng. 21, 2111–2116 (1993).
  8. H. Asonen, J. Näppi, A. Ovtchinnikov, P. Savolainen, G. Zhang, R. Ries, and M. Pessa, “High-power operation of aluminum-free (λ=980 nm) pump laser for erbium-doped fiber amplifier,” IEEE Photon. Technol. Lett. 5, 589–591 (1993).
  9. M. Ohkubo, T. Ijichi, A. Iketani, and T. Kikuta, “Aluminum free InGaAs/GaAs/InGaAsP/InGaP GRINSCH SL-QW lasers at 0.98 μm,” Electron. Lett. 28, 1149–1150 (1992).
  10. M. C. Amann and B. Steegmuller, “Calculation of the refractive index-step for the metal-cladded-ridge-waveguide laser,” Appl. Opt. 20, 1483–1486 (1981).
  11. T. Ohtoshi, K. Yamagushi, C. Nagaoka, T. Uda, M. Murayama, and N. Chinone, “A two-dimensional device simulator of semiconductor lasers,” Solid-State Electron. 30, 627–638 (1987).
  12. J. Buus, “The theory of dielectric slab waveguide with complex refractive index applied to GaAs lasers,” in Proceedings of the 7th European Microwave Conference (Miller Freeman, Kent, UK, 1977), pp. 27–33.
  13. M. Münkel, F. Kaiser, and O. Hess, “Spatio-temporal dynamics of multi-stripe semiconductor lasers with delayed optical feedback,” Phys. Lett. A 222, 67–75 (1996).
  14. M. Münkel, F. Kaiser, and O. Hess, “Stabilization of spatio-temporally chaotic laser arrays by means of delayed optical feedback,” Phys. Rev. E 56, 3868–3875 (1997).
  15. I. Fischer, O. Hess, W. Elsässer, and E. Göbel, “Complex spatio-temporal dynamics in the near-field of a broad-area semiconductor laser,” Europhys. Lett. 35, 579–584 (1996).
  16. I. Fischer, O. Hess, and W. Elsässer, “Nonlinear spatio-temporal emission dynamics of broad-area laser diodes,” in A Perspective Look at Nonlinear Media: From Physics to Biology and Social Sciences, J. Parisi, St. C. Müller, and W. Zimmermann, eds., Vol. LPN503 of Lecture Notes in Physics (Springer-Verlag, Berlin, 1998), pp. 362–369.
  17. T. Burkhard, M. O. Ziegler, I. Fischer, and W. Elsässer, “Spatio-temporal dynamics of broad area semiconductor lasers and its characterization,” Chaos Solitons Fractals 10, 845–850 (1999).
  18. O. Hess, Spatio-Temporal Dynamics of Semiconductor Lasers (Wissenschaft und Technik Verlag, Berlin, 1993).
  19. O. Hess, “Spatio-temporal complexity in multi-stripe and broad-area semiconductor lasers,” Chaos Solitons Fractals 4, 1597–1618 (1994).
  20. O. Hess, S. W. Koch, and J. V. Moloney, “Filamentation and beam propagation in broad-area semiconductor lasers,” IEEE J. Quantum Electron. 31, 35–43 (1995).
  21. R. K. DeFrees, D. J. Bossert, N. Yu, K. Harnett, and R. A. Elliot, “Spectral and picosecond temporal properties of flared guide Y-coupled phase-locked laser arrays,” Appl. Phys. Lett. 53, 2380–2382 (1988).
  22. I. Fischer, G. H. M. van Tartwijk, A. M. Levine, W. Elsässer, E. Göbel, and D. Lenstra, “Fast pulsing and chaotic itinerancy with a drift in the coherence collapse of semiconductor lasers,” Phys. Rev. Lett. 76, 220–223 (1996).
  23. M. O. Ziegler, E. Miltényi, M. Münkel, J. Greif, G. Jennemann, I. Fischer, H. Asonen, and W. Elsässer, “Spatio-temporal dynamics in the near-field of a 980-nm ridge waveguide pump laser diode,” in Physics and Simulation of Optoelectronic Devices V, M. Osinski and W. Chow, eds., Proc. SPIE 2994, 572–579 (1997).
  24. J. M. Olson, R. K. Ahrenkiel, D. J. Dunlavy, B. Keyes, and A. E. Kibbler, “Ultralow recombination velocity at Ga0.5In0.5P/GaAs heterointerfaces,” Appl. Phys. Lett. 55, 1208–1210 (1989).
  25. H. Asonen, Tampere University of Technology, Tampere, Finland (personal communication, 1997).
  26. G. P. Agrawal and N. K. Dutta, Long-Wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986).
  27. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  28. R. F. Kazarinov, C. H. Henry, and R. A. Logan, “Longitudinal mode self-stabilization in semiconductor lasers,” J. Appl. Phys. 53, 4631–4644 (1982).
  29. L. K. Tiemeijer, P. I. Kuindersma, P. J. A. Thijs, and G. L. J. Rikken, “Passive FM locking in InGaAsP semiconductor lasers,” IEEE J. Quantum Electron. 25, 1385–1392 (1989).
  30. M. Homar, J. V. Moloney, and M. San Miguel, “Traveling wave model of a multimode Fabry–Pérot laser in free running and external cavity configurations,” IEEE J. Quantum Electron. 32, 553–566 (1996).
  31. A. Klehr, A. Bärwolf, R. Müller, M. Voss, J. Sacher, W. Elsässer, and E. O. Göbel, “Ultrafast polarization switching in ridge waveguide laser diodes,” Electron. Lett. 27, 1680–1682 (1991).
  32. A. Klehr, R. Müller, M. Voss, and A. Bärwolf, “Gigahertz switching behavior of polarization-bistable InGaAsP/InP lasers under high-frequency current modulation,” Appl. Phys. Lett. 64, 830–832 (1994).
  33. N. Hodgson and H. Weber, Optical Resonators: Fundamentals, Advanced Concepts and Applications (Springer-Verlag, London, 1997).
  34. P. A. Kirkby and G. H. B. Thompson, “Channeled substrate buried heterostructure GaAs–(GaAl)As injection lasers,” J. Appl. Phys. 47, 4578–4589 (1976).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited