OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 16, Iss. 11 — Nov. 1, 1999
  • pp: 2045–2054

High-frequency beam steering in vertical-cavity surface-emitting lasers: optical gain and waveguiding effects

A. Valle, P. Rees, L. Pesquera, and K. A. Shore  »View Author Affiliations


JOSA B, Vol. 16, Issue 11, pp. 2045-2054 (1999)
http://dx.doi.org/10.1364/JOSAB.16.002045


View Full Text Article

Acrobat PDF (455 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Static and dynamic characteristics of weakly index-guided vertical-cavity surface-emitting lasers in a multi-transverse-mode regime are analyzed by use of a model that takes into account the transverse modes supported by the waveguide and a consistent spectral gain including many-body effects. Waveguide effects are addressed by consideration of different refractive-index steps. We show that stronger competition between transverse modes occurs when their confinement in the waveguide is increased. Selection of a particular high-order transverse mode by use of azimuthal-dependent current profiling can be obtained over a wide current range. We study the alternate current modulation of two orthogonal high-order transverse modes, taking into account thermal effects. This current-induced spatial switching leads to good-quality high-frequency beam steering in the laser azimuthal direction when an appropriate current profile is considered according to the refractive-index step.

© 1999 Optical Society of America

OCIS Codes
(060.4080) Fiber optics and optical communications : Modulation
(140.2020) Lasers and laser optics : Diode lasers
(140.3300) Lasers and laser optics : Laser beam shaping
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers

Citation
A. Valle, P. Rees, L. Pesquera, and K. A. Shore, "High-frequency beam steering in vertical-cavity surface-emitting lasers: optical gain and waveguiding effects," J. Opt. Soc. Am. B 16, 2045-2054 (1999)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-16-11-2045


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. von Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization and transverse mode characteristics of VCSELs,” IEEE J. Quantum Electron. 27, 1402–1409 (1991).
  2. D. Vakhshoori, J. D. Wynn, G. J. Zydzik, R. E. Leibenguth, M. T. Asom, K. Kojima, and R. A. Morgan, “Top-surface emitting lasers with 1.9 V threshold voltage and the effect of spatial hole burning on their transverse mode operation and efficiencies,” Appl. Phys. Lett. 62, 1448–1450 (1993).
  3. O. Buccafusca, J. L. A. Chilla, J. J. Rocca, S. Feld, C. Wilmsen, V. Morozov, and R. Leibenguth, “Transverse mode dynamics in vertical cavity surface emitting lasers excited by fast electrical pulses,” Appl. Phys. Lett. 68, 590–592 (1996).
  4. Y. Satuby and M. Orenstein, “Small signal modulation of multitransverse modes vertical cavity surface emitting lasers,” IEEE Photon. Technol. Lett. 10, 757–759 (1998).
  5. C. Mignosi, P. Dowd, L. Raddatz, I. H. White, M. C. Nowell, D. G. Cunningham, M. R. Tan, and S. Y. Wang, “Dynamics of mode partitioning in gain guided GaAs vertical cavity surface emitting lasers,” in Advances in Vertical Cavity Surface Emitting Lasers, C. Chang-Hasnain, ed., Vol. 15 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 77–82.
  6. M. Giudici, J. R. Tredicce, G. Vaschenko, J. Rocca, and C. S. Menoni, “Spatio-temporal dynamics in vertical cavity surface emitting lasers excited by fast electrical pulses,” Opt. Commun. 158, 313–321 (1998).
  7. D. A. Richie, T. Zhang, K. D. Choquette, R. E. Leibenguth, J. C. Zachman, and N. Tabatabaie, “Chaotic dynamics of mode competition in a vertical-cavity surface emitting laser diode under DC excitation,” IEEE J. Quantum Electron. 30, 2500–2506 (1994).
  8. G. C. Wilson, D. M. Kuchta, J. D. Walker, and J. S. Smith, “Spatial hole burning and self-focusing in vertical cavity surface emitting laser diodes,” Appl. Phys. Lett. 64, 542–544 (1994).
  9. A. Valle, J. Sarma, and K. A. Shore, “Spatial holeburning effects on the dynamics of vertical cavity surface-emitting laser diodes,” IEEE J. Quantum Electron. 31, 1423–1431 (1995).
  10. J. Y. Law and G. P. Agrawal, “Effects of spatial hole burning on gain switching in vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 33, 462–468 (1997).
  11. M. Ogura, S. Fuiji, T. Okada, M. Mori, K. Mori, T. Asaka, and H. Iwano, “Transverse mode characteristics of a DBR surface emitting laser with buried heterostructure,” Jpn. J. Appl. Phys. 30, 3879–3882 (1991).
  12. R. A. Morgan, G. D. Guth, M. W. Focht, M. T. Asom, K. Kojima, L. E. Rogers, and S. E. Callis, “Transverse mode control of vertical-cavity top-surface emitting lasers,” IEEE Photon. Technol. Lett. 4, 374–376 (1993).
  13. M. A. Hadley, G. C. Wilson, K. Y. Lau, and J. S. Smith, “High single transverse mode output from external cavity surface emitting laser diodes,” Appl. Phys. Lett. 63, 1607–1609 (1993).
  14. K. D. Choquette, K. L. Lear, R. E. Leibenguth, and M. T. Asom, “Polarization modulation of cruciform VCSELs,” Appl. Phys. Lett. 64, 2767–2769 (1994).
  15. Y. A. Wu, G. S. Li, R. F. Nabiev, K. D. Choquette, C. Caneau, and C. J. Chang Hasnain, “Single mode, passive antiguide vertical cavity surface emitting laser,” IEEE J. Sel. Top. Quantum Electron. 1, 629–637 (1995).
  16. K. D. Choquette, G. R. Hadley, H. Q. Hou, K. M. Geib, and B. E. Hammons, “Leaky mode vertical cavity lasers using cavity resonance modification,” Electron. Lett. 34, 991–993 (1998).
  17. J. Dellunde, A. Valle, and K. A. Shore, “Transverse-mode selection in external-cavity vertical-cavity surface-emitting laser diodes,” J. Opt. Soc. Am. B 13, 2477–2483 (1996).
  18. J. Y. Law and G. P. Agrawal, “Effects of optical feedback on static and dynamic characteristics of VCSELs,” IEEE J. Sel. Top. Quantum Electron. 3, 353–358 (1997).
  19. Y. G. Zhao and J. G. McInerney, “Transverse mode control of vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 32, 1950–1958 (1996).
  20. H. Li, T. H. Lucas, J. G. McInerney, and R. A. Morgan, “Transverse modes and patterns of electrically pumped vertical cavity surface emitting semiconductor lasers,” Chaos Solitons Fractals 4, 1619–1636 (1994).
  21. F. B. de Colstoun, G. Khitrova, A. V. Fedorov, T. R. Nelson, C. Lowry, T. M. Brennan, B. G. Hammons, and P. Maker, “Transverse modes, vortices, and vertical cavity surface emitting lasers,” Chaos Solitons Fractals 4, 1575–1596 (1994).
  22. F. Prati, M. Travagnin, and L. A. Lugiato, “Logic gates and optical switching with vertical-cavity surface emitting lasers,” Phys. Rev. A 55, 690–700 (1997).
  23. R. Balasubramanyam and J. Sarma, “Influence of surface recombination and current profiles on VCSEL operation,” presented at the Conference on Semiconductor and Integrated Optoelectronics, Cardiff, Wales, UK, March 27–29, 1995, paper 57.
  24. A. Valle, “High-frequency beam steering induced by switching of high-order transverse modes in vertical cavity surface emitting lasers,” Appl. Phys. Lett. 73, 1607–1609 (1998).
  25. K. L. Lear, A. Mar, K. D. Choquette, S. P. Kilcoyne, R. P. Schneider, and K. M. Geib, “High frequency modulation of oxide-confined vertical cavity surface emitting lasers,” Electron. Lett. 32, 457–458 (1996).
  26. L. Fan, M. C. Wu, H. C. Lee, and P. Grodzinski, “Novel vertical-cavity surface-emitting lasers with integrated optical beam router,” Electron. Lett. 31, 729–730 (1995).
  27. L. Fan, M. C. Wu, H. C. Lee, and P. Grodzinski, “Dynamic beam switching of vertical-cavity surface-emitting lasers with integrated optical beam routers,” IEEE Photon. Technol. Lett. 9, 505–507 (1997).
  28. N. Nieuborg, K. Panajotov, A. Goulet, I. Veretennicoff, and H. Thienpont, “Data transparent reconfigurable optical interconnections based on polarization-switching VCSELs and polarization-selective diffractive optical elements,” IEEE Photon. Technol. Lett. 10, 973–975 (1998).
  29. A. Valle, “Selection and modulation of high-order transverse modes in vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 34, 1924–1932 (1998).
  30. F. P. Logue, P. Rees, J. F. Heffernan, C. Jordan, J. F. Donegan, J. Hegarty, F. Hiei, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical gain in (Zn, Cd)Se–Zn(S, Se) quantum wells,” J. Opt. Soc. Am. B 15, 1295–1303 (1998).
  31. F. P. Logue, P. Rees, J. F. Heffernan, C. Jordan, J. F. Donegan, J. Hegarty, F. Hiei, and A. Ishibashi, “Effect of Coulomb enhancement on optical gain in (Zn, Cd)Se/ZnSe multiple quantum wells,” Phys. Rev. B 54, 16417–16420 (1996).
  32. P. Rees, J. F. Heffernan, F. P. Logue, J. F. Donegan, C. Jordan, J. Hegarty, F. Hiei, and A. Ishibashi, “High temperature gain measurements in optically pumped ZnCdSe–ZnSe quantum wells,” IEE Proc. Optoelectron. 143, 110–112 (1996).
  33. C. H. Chong and J. Sarma, “Lasing mode selection in vertical cavity surface emitting laser diodes,” IEEE Photon. Technol. Lett. 5, 761–763 (1993).
  34. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).
  35. T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, “Polarization control of vertical-cavity surface-emitting lasers using a birefringent metal/dielectric polarizer loaded on top distributed-Bragg-reflector,” IEEE J. Sel. Top. Quantum Electron. 1, 667–673 (1995).
  36. P. Dowd, P. J. Heard, J. A. Nicholson, L. Raddatz, I. H. White, R. V. Penty, J. C. C. Day, G. C. Allen, S. W. Corzine, and M. R. T. Tan, “Complete polarization control of GaAs gain guided top-surface emitting vertical cavity lasers,” Electron. Lett. 33, 1315–1317 (1997).
  37. W. W. Chow, S. W. Koch, and M. Sargent III, Semiconductor Laser Physics (Springer-Verlag, Berlin, 1994), p. 317.
  38. J. Martin Regalado, J. L. A. Chilla, J. J. Rocca, and P. Brusenbach, “Polarization switching in vertical-cavity surface emitting lasers observed at constant active region temperature,” Appl. Phys. Lett. 70, 3350–3352 (1997).
  39. T. E. Sale, Vertical Cavity Surface Emitting Lasers (Research Studies, Taunton, UK, 1995).
  40. M. Orenstein, N. G. Stoffel, A. C. von Lehmen, J. P. Harbison, and L. T. Florez, “Efficient continuous wave operation of vertical-cavity surface emitting lasers using buried compensation layers to optimize current flow,” Appl. Phys. Lett. 59, 31–33 (1991).
  41. L. M. F. Chirovsky, R. E. Leibenguth, W. S. Hobson, S. P. Hui, G. J. Zydzik, B. J. Tseng, J. D. Wynn, J. Lopata, and L. A. D’Asaro, “Vertical-cavity surface emitting lasers with ion-implanted current apertures and index guiding,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CPD14.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited