OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 16, Iss. 11 — Nov. 1, 1999
  • pp: 2055–2059

Simulation results of transverse-optical confinement in airpost, regrown, and oxidized vertical-cavity surface-emitting laser structures

Peter Bienstman, Bart Demeulenaere, Bart Dhoedt, and Roel Baets  »View Author Affiliations


JOSA B, Vol. 16, Issue 11, pp. 2055-2059 (1999)
http://dx.doi.org/10.1364/JOSAB.16.002055


View Full Text Article

Enhanced HTML    Acrobat PDF (406 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Based on a numerical optical model for calculating threshold material gain in vertical-cavity surface-emitting laser, we investigate the influence of transverse-optical confinement in airpost, regrown, and oxidized structures. In each of these cases, we demonstrate the trade-off that needs to be made between low threshold for the fundamental laser mode and good modal stability.

© 1999 Optical Society of America

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers

Citation
Peter Bienstman, Bart Demeulenaere, Bart Dhoedt, and Roel Baets, "Simulation results of transverse-optical confinement in airpost, regrown, and oxidized vertical-cavity surface-emitting laser structures," J. Opt. Soc. Am. B 16, 2055-2059 (1999)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-16-11-2055


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. R. Hegblom, N. M. Margalit, A. Fiore, and L. A. Coldren, “Small efficient vertical cavity lasers with tapered oxide apertures,” Electron. Lett. 34, 895–897 (1998). [CrossRef]
  2. D. L. Huffaker and D. G. Deppe, “Improved performance of oxide-confined vertical-cavity surface-emitting lasers using a tunnel injection active region,” Appl. Phys. Lett. 71, 1449–1451 (1997). [CrossRef]
  3. K. L. Lear, K. D. Choquette, R. P. Schneider, S. P. Kilcoyne, and K. M. Geib, “Selectively oxidized vertical cavity surface emitting lasers with 50% power conversion efficiency,” Electron. Lett. 31, 208–209 (1995). [CrossRef]
  4. K. D. Choquette, R. P. Schneider, K. L. Lear, and K. M. Geib, “Low threshold voltage vertical cavity lasers fabricated by selective oxidation,” Electron. Lett. 30, 2043–2044 (1994). [CrossRef]
  5. K. D. Choquette, K. L. Lear, R. P. Schneider, K. M. Geib, J. J. Figiel, and R. Hull, “Fabrication and performance of selectively oxidized vertical cavity lasers,” IEEE Photon. Technol. Lett. 7, 1237–1239 (1995). [CrossRef]
  6. B. Demeulenaere, P. Bienstman, B. Dhoedt, and R. Baets, “Detailed study of AlAs-oxidized apertures in VCSEL cavities for optimized modal performance,” IEEE J. Quantum Electron. 35, 358–367 (1999). [CrossRef]
  7. G. R. Hadley, “Effective index model for vertical-cavity surface-emitting lasers,” Opt. Lett. 20, 1483–1485 (1995). [CrossRef] [PubMed]
  8. G. R. Hadley, K. L. Lear, M. E. Warren, K. D. Choquette, J. W. Scott, and S. W. Corzine, “Comprehensive numerical modeling of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32, 607–616 (1996). [CrossRef]
  9. G. R. Hadley, “Low-truncation-error finite difference equations for photonics simulation. II. Vertical-cavity surface-emitting lasers,” J. Lightwave Technol. 16, 142–151 (1998). [CrossRef]
  10. M. J. Noble, J. P. Loehr, and J. A. Lott, “Analysis of microcavity lasing modes using a full-vector weighted index method,” IEEE J. Quantum Electron. 34, 1892–1903 (1998). [CrossRef]
  11. M. J. Noble, J. P. Loehr, and J. A. Lott, “Semi-analytic calculation of diffraction losses and threshold currents in microcavity VCSELs,” in IEEE LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), pp. 212–213, paper WI3.
  12. M. J. Noble, J. P. Loehr, and J. A. Lott, “Quasi-exact optical analysis of oxide apertured microcavity VCSEL’s using vector finite elements,” IEEE J. Quantum Electron. 34, 2327–2339 (1998). [CrossRef]
  13. B. Klein, L. F. Register, K. Hess, D. G. Deppe, and Q. Deng, “Self-consistent Green’s function approach to the analysis of dielectrically apertured vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 73, 3324–3326 (1998). [CrossRef]
  14. D. Burak and R. Binder, “Cold-cavity vectorial eigenmodes of VCSEL’s,” IEEE J. Quantum Electron. 33, 1205–1215 (1997). [CrossRef]
  15. R. Kuszelewicz and G. Aubert, “Modal matrix theory for light propagation in laterally restricted stratified media,” J. Opt. Soc. Am. A 14, 3262–3272 (1997). [CrossRef]
  16. W. C. Chew, Waves and Fields in Inhomogeneous Media (Van Nostrand Reinhold, New York, 1990).
  17. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996). [CrossRef]
  18. S. Rapp, J. Piprek, K. Streubel, J. André, and J. Wallin, “Temperature sensitivity of 1.54 μm vertical cavity lasers with an InP-based Bragg reflector,” IEEE J. Quantum Electron. 33, 1839–1845 (1997). [CrossRef]
  19. K. Streubel, S. Rapp, J. André, and J. Wallin, “Room-temperature pulsed operation of 1.5 μm vertical cavity lasers with an InP-based Bragg reflector,” IEEE Photon. Technol. Lett. 8, 1121–1123 (1996). [CrossRef]
  20. T. Heide, “Steady state and modal properties of vertical cavity surface emitting lasers,” M.S. thesis (Royal Institute of Technology, Stockholm, 1996).
  21. G. Liu, J.-F. Seurin, S. L. Chuang, D. I. Babic, S. W. Corzine, M. Tan, D. C. Barnes, and T. N. Tiouririne, “Mode selectivity study of vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 73, 726–729 (1998). [CrossRef]
  22. COST 268 modeling exercise (http://www.ele.kth.se/COST268/WG1/WGExcercise1.html), based on R. Kuszelewicz, Centre National d’Etudes en Télécommunication, Paris (personal communication, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited