OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 16, Iss. 11 — Nov. 1, 1999
  • pp: 2060–2071

Transverse-mode structure and pattern formation in oxide-confined vertical-cavity semiconductor lasers

S. P. Hegarty, G. Huyet, P. Porta, J. G. McInerney, K. D. Choquette, K. M. Geib, and H. Q. Hou  »View Author Affiliations


JOSA B, Vol. 16, Issue 11, pp. 2060-2071 (1999)
http://dx.doi.org/10.1364/JOSAB.16.002060


View Full Text Article

Acrobat PDF (628 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analyze the transverse profiles of oxide-confined vertical-cavity laser diodes as a function of aperture size. For small apertures we demonstrate that thermal lensing can be the dominant effect in determining the transverse resonator properties. We also analyze pattern formation in lasers with large apertures where we observe the appearance of tilted waves.

© 1999 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.0250) Optoelectronics : Optoelectronics
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers

Citation
S. P. Hegarty, G. Huyet, P. Porta, J. G. McInerney, K. D. Choquette, K. M. Geib, and H. Q. Hou, "Transverse-mode structure and pattern formation in oxide-confined vertical-cavity semiconductor lasers," J. Opt. Soc. Am. B 16, 2060-2071 (1999)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-16-11-2060


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65, 97–99 (1994).
  2. K. D. Choquette, R. P. Schneider, Jr., K. L. Lear, and K. M. Geib, “Low threshold voltage vertical-cavity lasers fabricated by selective oxidation,” Electron. Lett. 30, 2043–2044 (1994).
  3. K. L. Lear, K. D. Choquette, R. P. Schneider, Jr., S. P. Kilcoyne, and K. M. Geib, “Selectively oxidised vertical-cavity surface emitting lasers with 50% power conversion efficiency,” Electron. Lett. 31, 208–208 (1995).
  4. G. M. Yang, M. H. MacDougal, and P. D. Dapkus, “Ultralow threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation,” Electron. Lett. 31, 886–886 (1995).
  5. K. L. Lear and R. P. Schneider, Jr., “Uniparabolic mirror grading for vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 68, 605–607 (1996).
  6. L. A. Lugiato, M. Brambilla, and A. Gatti, Advances in Atomic, Molecular and Optical Physics, B. Bedersen and H. Walther, eds. (Academic, San Diego, Calif., 1999).
  7. S. P. Hegarty, G. Huyet, J. G. McInerney, and K. D. Choquette, “Pattern formation in the transverse section of a laser with a large Fresnel number,” Phys. Rev. Lett. 82, 1434–1437 (1999).
  8. S. P. Hegarty, G. Huyet, J. G. McInerney, K. D. Choquette, K. M. Geib, and H. Q. Hou, “Size dependence of transverse mode structure in oxide-confined vertical-cavity laser diodes,” Appl. Phys. Lett. 73, 596–598 (1998).
  9. K. D. Choquette, W. W. Chow, G. R. Hadley, H. Q. Hou, and K. M. Geib, “Scalability of small-aperture selectively oxidised vertical cavity lasers,” Appl. Phys. Lett. 70, 823–825 (1997).
  10. E. R. Hegblom, D. I. Babic, B. J. Thibeult, and L. A. Coldren, “Estimation of scattering losses in dielectrically apertured vertical cavity lasers,” Appl. Phys. Lett. 68, 1757–1759 (1996).
  11. A. Yariv, Quantum Electronics (Wiley, New York, 1967).
  12. Y. G. Zhao and J. G. McInerney, “Transient temperature response of vertical-cavity surface-emitting semiconductor lasers,” IEEE J. Quantum Electron. 31, 1668–1673 (1995).
  13. T.-H. Oh, D. L. Huffaker, and D. G. Deppe, “Size effects in small oxide confined vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 69, 3152–3154 (1996).
  14. M. Cross and P. Hohenberg, “Pattern formation outside of equilibrium,” Rev. Mod. Phys. 65, 851–1112 (1993).
  15. N. Abraham, P. Mandel, and L. Narducci, Progress in Optics, E. Wolf, ed. (North-Holland, New York, 1988), Vol. XXV, pp. 1–190.
  16. T. Ackemann, Y. Logvin, A. Heuer, and W. Lange, “Transition between positive and negative hexagons in optical pattern formation,” Phys. Rev. Lett. 75, 3450–3453 (1995).
  17. F. T. Arecchi, G. Giacomelli, P. L. Ramazza, and S. Residori, “Vortices and defect statistics in 2-dimensional optical chaos,” Phys. Rev. Lett. 67, 3749–3752 (1991).
  18. A. V. Mamaev and M. Saffman, “Pattern formation in a linear photorefractive oscillator,” Opt. Commun. 128, 281–286 (1996).
  19. K. Staliunas, G. Slekys, and C. O. Weiss, “Nonlinear pattern formation in active optical systems: shocks, domains of tilted waves, and cross-roll patterns,” Phys. Rev. Lett. 79, 2658–2661 (1997).
  20. E. Pampaloni, P. L. Ramazza, S. Residori, and F. T. Arecchi, “2-dimensional crystals and quasi-crystals in nonlinear optics,” Phys. Rev. Lett. 74, 258–261 (1995).
  21. R. Lefever, L. A. Lugiato, W. Kaige, N. B. Abraham, and P. Mandel, “Phase dynamics of transverse diffraction patterns in the laser,” Phys. Lett. A 135, 254–256 (1989).
  22. P. Coullet, L. Gil, and F. Rocca, “Optical vortices,” Opt. Commun. 73, 403–408 (1989).
  23. G. L. Oppo, G. D’Alessandro, and W. J. Firth, “Spatiotemporal instabilities of lasers in models reduced via center manifold techniques of lasers in models reduced via center manifold techniques,” Phys. Rev. A 44, 4712–4720 (1991).
  24. G. D’Alessandro, A. J. Kent, and G.-L. Oppo, “Centre manifold reduction of laser equations with transverse effects: an approach based on modal expansion,” Opt. Commun. 131, 172–194 (1996).
  25. J. Lega, J. V. Moloney, and A. C. Newell, “Swift–Hohenberg equation for lasers,” Phys. Rev. Lett. 73, 2978–2981 (1994); “Universal description of laser dynamics near-threshold,” 83, 478–498 (1995).
  26. M. Brambilla, L. A. Lugiato, F. Prati, L. Spinelli, and W. J. Firth, “Spatial soliton pixels in semiconductor devices,” Phys. Rev. Lett. 79, 2042–2045 (1997).
  27. G. Huyet, C. M. Martinoni, J. R. Tredicce, and S. Rica, “Spatiotemporal dynamics of lasers with a large Fresnel number,” Phys. Rev. Lett. 75, 4027–4030 (1994); G. Huyet and J. R. Tredicce, “Spatio-temporal chaos in the transverse section of lasers,” Physica D 96, 209–214 (1996); G. Huyet, C. Mathis, and J. R. Tredicce, “Dynamics of annular lasers,” Opt. Commun. OPCOB8 127, 257–262 (1996).
  28. G. Huyet and S. Rica, “Spatio-temporal instabilities in the transverse patterns of lasers,” Physica D 96, 215–229 (1996).
  29. D. Dangoisse, D. Hennequin, C. Lepers, E. Louvergneaux, and P. Glorieux, “2 dimensional optical lattices in a CO2 laser,” Phys. Rev. A 46, 5955–5958 (1992); E. Louvergneaux, D. Hennequin, D. Dangoisse, and P. Glorieux, “Transverse mode competition in a CO2 laser,” Phys. Rev. A 53, 4435–4438 (1996).
  30. S. Balle, “Effective 2-level-model with asymmetric gain for laser-diodes,” Opt. Commun. 119, 227–235 (1995).
  31. T. Rossler, R. A. Indik, G. K. Harkness, J. V. Moloney, and C. Z. Ning, “Modeling the interplay of thermal effects and transverse mode behavior in native-oxide-confined vertical-cavity surface-emitting lasers,” Phys. Rev. A 58, 3279–3292 (1998).
  32. W. W. Chow, K. D. Choquette, M. Hagerot-Crawford, K. L. Lear, and G. R. Hadley, “Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33, 1810–1824 (1997).
  33. J. Martin-Regalado, S. Balle, and M. San Miguel, “Polarization and transverse-mode dynamics of gain-guided vertical-cavity surface-emitting lasers,” Opt. Lett. 22, 460–462 (1997).
  34. M. van Exter, A. Al-Remawi, and J. Woerdman, “Polarization fluctuations demonstrate nonlinear anisotropy of avertical-cavity semiconductor laser,” Phys. Rev. Lett. 80, 4875–4878 (1998).
  35. D. L. Huffaker, H. Deng, Q. Deng, and D. G. Deppe, “Ring and stripe oxide-confined vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 69, 3477–3479 (1996).
  36. H. Li, T. L. Lucas, J. G. McInerney, and R. A. Morgan, “Transverse modes and patterns of electrically pumped vertical-cavity surface-emitting semiconductor lasers,” Chaos Solitons Fractals 4, 1619–1635 (1994).
  37. G. K. Harkness, W. J. Firth, J. B. Geddes, J. V. Moloney, and E. M. Wright, “Boundary effects in large-aspect-ratio lasers,” Phys. Rev. A 50, 4310–4317 (1994).
  38. P. Coullet, T. Frisch, and F. Plaza, “Sources and sinks of wave patterns,” Physica D 62, 75–79 (1993).
  39. R. A. Morgan, G. D. Guth, M. W. Focht, M. T. Asom, K. Kojima, L. E. Rogers, and S. E. Callis, “Transverse mode of vertical cavity top surface emitting lasers,” IEEE Photon. Technol. Lett. 4, 374–377 (1993).
  40. C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamics, polarization and transverse-mode characteristics of vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1402–1409 (1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited