OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 16, Iss. 11 — Nov. 1, 1999
  • pp: 2072–2082

Microscopic modeling and simulation of transverse-mode dynamics of vertical-cavity surface-emitting lasers

C. Z. Ning and P. M. Goorjian  »View Author Affiliations


JOSA B, Vol. 16, Issue 11, pp. 2072-2082 (1999)
http://dx.doi.org/10.1364/JOSAB.16.002072


View Full Text Article

Enhanced HTML    Acrobat PDF (798 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The dynamics of transverse modes of vertical-cavity surface-emitting lasers were simulated by use of a model that incorporates microscopically computed gain and refractive index with many-body effects. The model equations were solved by finite-difference methods in two-dimensional space and time domains without any a priori assumptions of symmetry of solutions or types and number of modes. Simulation was carried out for devices with and without index guiding at various pumping levels. We show that index-guided vertical-cavity surface-emitting lasers involve more transverse modes than purely gain-guided devices at the same pumping level. Both time-resolved and time-averaged near-field patterns over several time scales are investigated. Complicated spatial and temporal dynamic behaviors occur at higher pumping levels that include azimuthal rotating waves and intensity oscillations owing to dynamic competition between modes of the same order and those of different orders.

© 1999 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.2020) Lasers and laser optics : Diode lasers
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.0250) Optoelectronics : Optoelectronics
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers

Citation
C. Z. Ning and P. M. Goorjian, "Microscopic modeling and simulation of transverse-mode dynamics of vertical-cavity surface-emitting lasers," J. Opt. Soc. Am. B 16, 2072-2082 (1999)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-16-11-2072


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. For a survey of recent progress in VCSEL’s, see C. Chang-Hasnain, ed., Advances in Vertical Cavity Surface Emitting Lasers, Vol. 15 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997).
  2. W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, “Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33, 1810–1824 (1997). [CrossRef]
  3. C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. Von Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1402–1409 (1991). [CrossRef]
  4. M. Orenstein, Y. Satuby, U. Ben-Ami, and J. P. Harbison, “Transverse modes and lasing characteristics of selectively grown vertical cavity semiconductor lasers,” Appl. Phys. Lett. 69, 1840–1842 (1996). [CrossRef]
  5. Y. Satuby and M. Orenstein, “Limits of the modulation response of a single-mode proton implanted VCSEL,” IEEE Photon. Technol. Lett. 10, 760–762 (1998). [CrossRef]
  6. Y. Satuby and M. Orenstein, “Small signal modulation of multitransverse modes vertical-cavity surface-emitting semiconductor lasers,” IEEE Photon. Technol. Lett. 10, 757–759 (1998). [CrossRef]
  7. R. A. Morgan, G. D. Guth, M. W. Focht, M. T. Asom, K. Kojima, L. E. Rogers, and S. E. Callis, “Transverse mode control of vertical-cavity top-surface-emitting lasers,” IEEE Photon. Technol. Lett. 4, 374–377 (1993). [CrossRef]
  8. K. Tai, Y. Lai, K. F. Huang, T. C. Huang, T. D. Lee, and C. C. Wu, “Transverse mode emission characteristics of gain-guided surface-emitting lasers,” Appl. Phys. Lett. 63, 2624–2626 (1993). [CrossRef]
  9. G. C. Wilson, D. M. Kuchta, J. D. Walker, and J. S. Smith, “Spatial hole burning and self-focusing in vertical-cavity surface-emitting laser diodes,” Appl. Phys. Lett. 64, 542–544 (1994). [CrossRef]
  10. K. H. Hahn, M. R. Tan, Y. M. Houng, and S. Y. Wang, “Large area multitransverse-mode VCSELs for modal noise-reduction in multimode fibre systems,” Electron. Lett. 29, 1482–1483 (1993). [CrossRef]
  11. C. Mignosi, P. Dowd, L. Raddatz, I. H. White, M. C. Nowell, D. G. Cunningham, M. R. Tan, and S. Y. Wang, “Dynamics of mode partitioning in gain guided GaAs vertical cavity surface emitting lasers,” in Advances in Vertical Cavity Surface Emitting Lasers, C. Chang-Hasnain, ed., Vol. 15 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 77–82.
  12. S. P. Hegarty, G. Huyet, J. G. McInerney, K. D. Choquette, K. M. Geib, and H. Q. Hou, “Size dependence of transverse mode structure in oxide-confined vertical-cavity laser diodes,” Appl. Phys. Lett. 73, 596–598 (1998). [CrossRef]
  13. H. Li, T. Lucas, J. G. McInerney, and R. Morgan, “Transverse modes and patterns of electrically pumped vertical-cavity surface-emitting semiconductor lasers,” Chaos Solitons Fractals 4, 1619–1636 (1994). [CrossRef]
  14. F. B. de Colstoun, G. Khitrova, A. V. Fedorov, T. R. Nelson, C. Lowry, T. M. Brennan, B. G. Hammons, and P. D. Maker, “Transverse modes, vortices and vertical-cavity surface-emitting lasers,” Chaos Solitons Fractals 4, 1575–1596 (1994). [CrossRef]
  15. J. Heinrich, E. Zeeb, and K. J. Ebeling, “Transverse mode under external feedback and fiber coupling efficiencies of VCSEL’s,” IEEE Photon. Technol. Lett. 10, 1365–1367 (1998). [CrossRef]
  16. I. Hoersch, R. Kusche, O. Marti, B. Weidl, and K. J. Ebeling, “Spectrally resolved near-field mode imaging of vertical-cavity semiconductor lasers,” J. Appl. Phys. 79, 3831–3834 (1996). [CrossRef]
  17. J. A. DeAro, K. D. Weston, R. W. Herrick, P. M. Petroff, and S. K. Buratto, “Near-field scanning optical microscopy of cleaved vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 13, 1364–1367 (1998). [CrossRef]
  18. D. L. Huffaker, H. Deng, Q. Deng, and D. G. Deppe, “Ring and stripe oxide-confined vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 69, 3477–3479 (1996). [CrossRef]
  19. T. Milster, W. Jiang, E. Walker, D. Burak, P. Claisse, P. Kelly, and R. Binder, “A single-mode high-power vertical cavity surface emitting laser,” Appl. Phys. Lett. 72, 3425–3427 (1998). [CrossRef]
  20. F. Prati, A. Tesei, L. A. Lugiato, and R. J. Horowicz, “Stable states in surface-emitting semiconductor lasers,” Chaos Solitons Fractals 4, 1637–1654 (1994). [CrossRef]
  21. A. Valle, “Selection and modulation of high-order transverse modes in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 34, 1924–1932 (1998). [CrossRef]
  22. A. Valle, J. Sarma, and K. A. Shore, “Spatial holeburning effects on the dynamics of vertical-cavity surface-emitting laser diodes,” IEEE J. Quantum Electron. 31, 1423–1431 (1995). [CrossRef]
  23. J. Y. Law and G. P. Agrawal, “Effects of spatial hole burning on gain switching in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33, 462–468 (1997). [CrossRef]
  24. J. Y. Law and G. P. Agrawal, “Feedback-induced chaos and intensity-noise enhancement in vertical-cavity surface-emitting lasers,” J. Opt. Soc. Am. B 15, 562–569 (1998). [CrossRef]
  25. A. Valle, “High-frequency beam steering induced by switching of high-order transverse modes in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 73, 1607–1609 (1998). [CrossRef]
  26. W. Nakwaski and R. P. Sarzala, “Transverse modes in gain-guided vertical-cavity surface-emitting lasers,” Opt. Commun. 148, 63–69 (1998). [CrossRef]
  27. M. Noble, J. P. Loehr, and J. A. Lott, “Analysis of microcavity VCSEL lasing modes using a full vector weighted index method,” IEEE J. Quantum Electron. 34, 1890–1903 (1998). [CrossRef]
  28. M. Noble, J. Shin, K. D. Choquette, J. P. Loehr, J. A. Lott, and Y. Lee, “Calculation and measurements of resonant-mode blueshifts in oxide-apertured VCSELs,” IEEE Photon. Technol. Lett. 10, 475–477 (1998). [CrossRef]
  29. D. Burak and R. Binder, “Electromagnetic characterization of vertical-cavity surface-emitting lasers based on a vectorial eigenmode calculation,” Appl. Phys. Lett. 72, 891–893 (1998). [CrossRef]
  30. D. Burak and R. Binder, “Cold-cavity vectorial eigenmodes of VCSELs,” IEEE J. Quantum Electron. 33, 1205–1215 (1997). [CrossRef]
  31. X. M. Gong, A. K. Chan, and H. F. Taylor, “Lateral mode discrimination in surface emitting DBR lasers with cylindrical symmetry,” IEEE J. Quantum Electron. 30, 1212–1218 (1994). [CrossRef]
  32. B. Demeulenaere, P. Bienstman, B. Dhoedt, and R. G. Baets, “Detailed study of AlAs-oxidized apertures in VCSEL cavities for optimized model performance,” IEEE J. Quantum Electron. 35, 358–367 (1999). [CrossRef]
  33. B. Klein, L. F. Register, K. Hess, D. G. Deppe, and Q. Deng, “Self-consistent Green’s function approach to the analysis of dielectrically apertured vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 73, 3324–3326 (1998). [CrossRef]
  34. H. Wenzel and H.-J. Wünsche, “The effective frequency method in the analysis of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33, 1156–1162 (1997). [CrossRef]
  35. D. Burak, S. A. Kemme, R. K. Kostuk, and R. Binder, “Spectral identification of transverse lasing modes of multiple index-guided vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 73, 3501–3503 (1998). [CrossRef]
  36. G. R. Hadley, K. L. Lear, M. E. Warren, K. D. Choquette, J. W. Scott, and S. W. Corzine, “Comprehensive numerical modeling of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32, 607–616 (1996). [CrossRef]
  37. T. Rössler, R. A. Indik, G. K. Harkness, J. V. Moloney, and C. Z. Ning, “Modeling the interplay of thermal effects and transverse mode behavior in native-oxide-confined vertical-cavity surface-emitting lasers,” Phys. Rev. A 58, 3279–3292 (1998). [CrossRef]
  38. P. M. Goorjian and C. Z. Ning, “Transverse mode dynamics of VCSELs through space–time domain simulation,” in Physics and Simulation of Optoelectronic Devices VII, P. Blood, A. Ishibashi, and M. Osinski, eds., Proc. SPIE 3625, 395–403 (1999). [CrossRef]
  39. C. Z. Ning, S. Bischoff, S. W. Koch, G. K. Harkness, J. V. Moloney, and W. W. Chow, “Microscopic modeling of vertical-cavity surface-emitting lasers: many-body interaction, plasma heating, and transverse dynamics,” Opt. Eng. 37, 1175–1181 (1998). [CrossRef]
  40. H. Haug and H. Haken, “Theory of noise in semiconductor laser emission,” Z. Phys. 204, 262–275 (1967). [CrossRef]
  41. C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 259–264 (1982). [CrossRef]
  42. C. Z. Ning, R. A. Indik, and J. V. Moloney, “Effective Bloch equations for semiconductor lasers and amplifiers,” IEEE J. Quantum Electron. 33, 1543–1550 (1997). [CrossRef]
  43. C. Z. Ning, J. V. Moloney, A. Egan, and R. A. Indik, “A first-principles fully space–time resolved model for a semiconductor laser,” Quantum Semiclassic. Opt. 9, 681–691 (1997). [CrossRef]
  44. J. V. Moloney, R. A. Indik, and C. Z. Ning, “Full space–time simulation of the high-brightness semiconductor lasers,” IEEE Photon. Technol. Lett. 9, 731–733 (1997). [CrossRef]
  45. J. V. Moloney, A. Egan, C. Z. Ning, and R. A. Indik, “Spontaneous spatiotemporal instabilities in current modulated master oscillator power amplifier lasers,” IEEE Photon. Technol. Lett. 10, 1229–1231 (1998). [CrossRef]
  46. A. Egan, C. Z. Ning, J. V. Moloney, R. A. Indik, M. Wright, D. J. Bossert, and J. G. McInerney, “Dynamic instabilities in master oscillator power amplifier semiconductor lasers,” IEEE J. Quantum Electron. 34, 166–170 (1998). [CrossRef]
  47. P. M. W. Skovgaard, J. G. McInerney, J. V. Moloney, R. A. Indik, and C. Z. Ning, “Enhanced stability of MFA-MOPA semiconductor lasers using a nonlinear, trumpet-shaped flare,” IEEE Photon. Technol. Lett. 9, 1220–1222 (1997). [CrossRef]
  48. W. W. Chow, S. W. Koch, and M. Sargent, Semiconductor Laser Physics (Springer-Verlag, Berlin, 1994), Chap. 4, pp. 119–156.
  49. C. Z. Ning, R. A. Indik, J. V. Moloney, W. W. Chow, A. Girndt, S. W. Koch, and R. Binder, “Incorporating many-body effects into modeling of semiconductor lasers and amplifiers,” in Physics and Simulation of Optoelectronic Devices V, W. W. Chow and M. Osinski, eds., Proc. SPIE 2994, 666–677 (1997).
  50. C. Z. Ning, R. A. Indik, and J. V. Moloney, “Self-consistent approach to thermal effects in vertical-cavity surface-emitting lasers,” J. Opt. Soc. Am. B 12, 1993–2004 (1995). [CrossRef]
  51. S. Hughes, A. Knorr, S. W. Koch, R. Binder, R. Indik, and J. V. Moloney, “The influence of electron–hole-scattering on the gain spectra of highly excited semiconductors,” Solid State Commun. 100, 555–559 (1996). [CrossRef]
  52. A. Girndt, F. Jahnke, A. Knorr, S. W. Koch, and W. W. Chow, “Multi-band Bloch equations and gain spectra of highly excited II–VI semiconductor quantum wells,” Phys. Status Solidi B 202, 725–739 (1997). [CrossRef]
  53. W. W. Chow, A. Knorr, S. Hughes, A. Girndt, and S. W. Koch, “Carrier correlation effects in a quantum well semiconductor laser medium,” IEEE J. Sel. Top. Quantum Electron. 3, 136–141 (1997). [CrossRef]
  54. J. Yao, G. P. Agrawal, P. Gallion, and C. Bowden, “Semiconductor laser dynamics beyond the rate-equation approximation,” Opt. Commun. 119, 246–255 (1995). [CrossRef]
  55. W. Yuen, G. S. Li, and C. J. Chang-Hasnain, “Multiple-wavelength vertical-cavity surface-emitting laser arrays with a record wavelength span,” IEEE Photon. Technol. Lett. 8, 4–6 (1996). [CrossRef]
  56. A. Fiore, Y. A. Akulova, J. Ko, E. R. Hegblom, and L. A. Coldren, “Low-threshold multiple-wavelength vertical-cavity laser arrays obtained by postgrowth wet oxidation,” Electron. Lett. 34, 1857–1858 (1998). [CrossRef]
  57. R. Michalzik and K. J. Ebeling, “Generalized BV diagrams for higher order transverse modes in planar vertical-cavity laser diodes,” IEEE J. Quantum Electron. 31, 1371–1379 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited