## Cavity solitons in passive bulk semiconductor microcavities. I. Microscopic model and modulational instabilities

JOSA B, Vol. 16, Issue 11, pp. 2083-2094 (1999)

http://dx.doi.org/10.1364/JOSAB.16.002083

Acrobat PDF (215 KB)

### Abstract

We consider a broad-area vertical microresonator with an active layer constituted by bulk GaAs driven by an external coherent homogeneous electromagnetic field, and we adopt a microscopic model that describes the field and carrier dynamics in the quasi-equilibrium regime. The theory is developed within the free-carrier approximation, with some relevant effects, such as the Urbach tail and the bandgap renormalization, which are taken into account in a phenomenological way. We include in the model the description of paraxial diffraction and carrier diffusion. A detailed study of the instabilities, both modulational and plane wave, affecting the homogeneous stationary state of the output field is performed. In this way we address the numerical research of cavity solitons, which appear as self-organized light peaks embedded in a homogeneous background, as discussed in a companion paper [J. Opt. Soc. Am. B **16**, 2095 (1999)]. Optimal conditions for cavity solitons’ existence are found in extended regions of the parameter space.

© 1999 Optical Society of America

**OCIS Codes**

(160.6000) Materials : Semiconductor materials

(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in

**Citation**

G. Tissoni, L. Spinelli, M. Brambilla, T. Maggipinto, I. M. Perrini, and L. A. Lugiato, "Cavity solitons in passive bulk semiconductor microcavities. I. Microscopic model and modulational instabilities," J. Opt. Soc. Am. B **16**, 2083-2094 (1999)

http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-16-11-2083

Sort: Year | Journal | Reset

### References

- F. T. Arecchi, “Space–time complexity in nonlinear optics,” Physica D 51, 450–464 (1991); L. A. Lugiato, “Spatio–temporal structures. Part I,” Phys. Rep. 219, 293–310 (1992); C. O. Weiss, “Spatio–temporal structures. Part II,” Phys. Rep. PRPLCM 219, 311–328 (1992); L. A. Lugiato, “Transverse nonlinear optics: introduction and review,” Chaos Solitons Fractals CSFOEH 4, 1251–1258 (1994); W. J. Firth, “Pattern formation in passive nonlinear optical systems,” in Self-Organization in Optical Systems and Applications in Information Technology, M. A. Vorontsov and W. B. Miller, eds. (Springer-Verlag, Berlin, 1995), pp. 69–96; L. A. Lugiato, M. Brambilla, and A. Gatti, Optical Pattern Formation, Vol. 40 of Advances in Atomic, Molecular and Optical Physics, B. Bederson and H. Walther, eds. (Academic, New York, 1998), pp. 229–306.
- J. V. Moloney and H. M. Gibbs, “Role of diffractive coupling and self-focusing or defocusing in the dynamical switching of a bistable optical cavity,” Phys. Rev. Lett. 48, 1607–1610 (1982).
- D. W. McLaughlin, J. V. Moloney, and A. C. Newell, “Solitary waves as fixed points of infinite-dimensional maps in an optical bistable ring cavity,” Phys. Rev. Lett. 51, 75–78 (1983).
- J. V. Moloney, H. Adachihara, D. W. McLaughlin, and A. C. Newell, “Fixed points and chaotic dynamics of an infinite-dimensional map,” in Chaos, Noise and Fractals, R. Pike and L. A. Lugiato, eds. (Hilger, Bristol, UK, 1987), pp. 137–186.
- N. N. Rosanov and G. V. Khodova, “Autosolitons in bistable interferometers,” Opt. Spectrosc. 65, 449–450 (1988).
- N. N. Rosanov, “Diffractive autosolitons in nonlinear interferometers,” J. Opt. Soc. Am. B 7, 1057–1065 (1990).
- N. N. Rosanov, “Transverse patterns in wide-aperture nonlinear optical systems,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1996), Vol. XXXV, pp. 1–60.
- M. Tlidi, P. Mandel, and R. Lefever, “Localized structures and localized patterns in optical bistability,” Phys. Rev. Lett. 73, 640–643 (1994).
- M. Tlidi and P. Mandel, “Spatial patterns in nascent optical bistability,” Chaos Solitons Fractals 4, 1475–1486 (1994).
- W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76, 1623–1626 (1996).
- W. J. Firth and A. J. Scroggie, “Spontaneous pattern formation in an absorptive system,” Europhys. Lett. 26, 521–526 (1994).
- M. Brambilla, L. A. Lugiato, and M. Stefani, “Interaction and control of optical localized structures,” Europhys. Lett. 34, 109–114 (1996); “Formation and control of localized structures in nonlinear optical systems,” Chaos 6, 368–372 (1996).
- M. Brambilla, L. A. Lugiato, F. Prati, L. Spinelli, and W. J. Firth, “Spatial soliton pixels in semiconductor devices,” Phys. Rev. Lett. 79, 2042–2045 (1997).
- K. Staliunas and V. J. Sanchez-Morcillo, “Localized structures in degenerate optical parametric oscillator,” Opt. Commun. 139, 306–312 (1997).
- C. Etrich, V. Peschel, and F. Lederer, “Solitary waves in quadratically nonlinear resonators,” Phys. Rev. Lett. 79, 2454–2457 (1997).
- D. Michaelis, U. Peschel, and F. Lederer, “Multistable localized structures and superlattices in semiconductor optical resonators,” Phys. Rev. A 56, R3366–R3369 (1997).
- L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542–2559 (1998).
- L. A. Lugiato, L. Spinelli, G. Tissoni, and M. Brambilla, “Modulational instabilities and cavity solitons in semiconductor microcavities,” J. Opt. B 1, 43–51 (1999).
- M. Le Berre, D. Leduc, S. Patrascu, E. Ressayre, and A. Tallet, “Beyond the mean-field model of the ring cavity,” Chaos Solitons Fractals 10, 627–649 (1999).
- G. L. Oppo, A. J. Scroggie, and W. J. Firth, “From domain walls to localized structures in degenerate optical parametric oscillators,” J. Opt. B 1, 133–138 (1999).
- M. Le Berre, D. Leduc, E. Ressayre, and A. Tallet, “Striped and circular domain walls in the degenerate optical parametric oscillator,” J. Opt. B 1, 153–160 (1999).
- A. Schreiber, B. Thüring, M. Kreuzer, and T. Tschudi, “Experimental investigation of solitary structures in a nonlinear optical feedback system,” Opt. Commun. 136, 415–418 (1997); R. Neubecker, B. Thuring, M. Kreuzer, and T. Tschudi, “Transition from spatio-temporal order to disorder in a single-feedback experiment,” Chaos Solitons Fractals 10, 681–692 (1999).
- C. O. Weiss, “Processing by arrays of spatial solitons,” Basic Research Project Final Rep. (European Strategic Programme for R & D in Information Technology, Braunschweig, Germany, 1998).
- M. Saffman, D. Montgomery, and D. Z. Anderson, “Collapse of a transverse-mode continuum in a self-imaging photorefractively pumped ring resonator,” Opt. Lett. 19, 518–520 (1994).
- V. Yu. Bazhenov, V. B. Taranenko, and M. V. Vasnetsov, “WTA dynamics in large aperture active cavity with saturable absorber,” in Topical Meeting on Optical Computing, A. M. Goncharenko, F. V. Karpushko, G. V. Sinitsyn, and S. P. Apanasevich, eds., Proc. SPIE 1806, 14–21 (1992).
- V. B. Taranenko, K. Staliunas, and C. O. Weiss, “Spatial soliton laser: localized structures in a laser with a saturable absorber in a self-imaging resonator,” Phys. Rev. A 56, 1582–1591 (1997).
- H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 2nd ed. (World Scientific, Singapore, 1993).
- W. W. Chow, S. W. Koch, and M. Sargent III, Semiconductor Laser Physics (Springer-Verlag, Berlin, 1994).
- R. Kuszelewicz, CNET, Laboratoire de Bagneux, 92225 Bagneux Cedex, France (personal communication, 1999).
- H. Haug and S. W. Koch, “Semiconductor laser theory with many-body effects,” Phys. Rev. A 39, 1887–1898 (1987).
- H. Haug and S. Schmitt-Rink, “Basic mechanisms of the optical nonlinearities of semiconductors near the band edge,” J. Opt. Soc. Am. B 2, 1135–1142 (1985).
- G. Tissoni, L. Spinelli, M. Brambilla, T. Maggipinto, I. M. Perrini, and L. A. Lugiato, “Cavity solitons in passive bulk semiconductor microcavities. II. Dynamical properties and control,” J. Opt. Soc. Am. B 16, 2095–2105 (1999).
- R. Bonifacio and L. A. Lugiato, “Bistable absorption in a ring cavity,” Lett. Nuovo Cimento 21, 505–509 (1978).
- F. Prati, A. Tesei, L. A. Lugiato, and R. J. Horowicz, “Stable states in surface-emitting semiconductor lasers,” Chaos Solitons Fractals 4, 1637–1654 (1994).
- G. P. Bava, P. Debernardi, and A. Pisoni, “QW optical response including valence band mixing and many body effects,” Internal Rep. DE/GE 91–002 (Politecnico di Torino, Turin, Italy, 1993).
- K. W. Boer, Survey of Semiconductor Physics (Van Nostrand Reinhold, New York, 1990).
- S. W. Koch, N. Peyghambarian, and H. M. Gibbs, “Band-edge nonlinearities in direct-gap semiconductors and their application to optical bistability and optical computing,” J. Appl. Phys. 63, R1–R11 (1988).
- Y. H. Lee, A. Chavez-Pirson, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann, “Room-temperature optical nonlinearities in GaAs,” Phys. Rev. Lett. 57, 2446–2449 (1986).
- P. K. Jakobsen, J. V. Moloney, A. C. Newell, and R. Indik, “Space–time dynamics of wide-gain-section lasers,” Phys. Rev. A 45, 8129–8137 (1992).
- H. Haken, Synergetics. An Introduction, 2nd ed., Vol. 1. of Springer Series in Synergetics (Springer-Verlag, Berlin, 1977), p. 123.
- D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, and W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265–275 (1984).
- C. Z. Ning, R. A. Indik, and J. V. Moloney, “Self-consistent approach to thermal effects in vertical-cavity surface-emitting lasers,” J. Opt. Soc. Am. B 12, 1993–2004 (1995); T. Rossler, R. A. Indik, G. K. Harkness, J. V. Moloney, and C. Z. Ning, “Modeling the interplay of thermal effects and transverse mode behavior in native-oxide-confined vertical-cavity surface-emitting lasers,” Phys. Rev. A 58, 3279–3292 (1998).
- H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, New York, 1985).
- R. Bonifacio and L. A. Lugiato, “Optical bistability and cooperative effects in resonance fluorescence,” Phys. Rev. A 18, 1129–1144 (1978).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.