OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 16, Iss. 11 — Nov. 1, 1999
  • pp: 2106–2113

Effect of photon-energy-dependent loss and gain mechanisms on polarization switching in vertical-cavity surface-emitting lasers

B. Ryvkin, K. Panajotov, A. Georgievski, J. Danckaert, M. Peeters, G. Verschaffelt, H. Thienpont, and I. Veretennicoff  »View Author Affiliations

JOSA B, Vol. 16, Issue 11, pp. 2106-2113 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (174 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have analyzed the effect of the photon energy and temperature dependence of both the gain and the total losses inside the cavity to understand the polarization behavior of vertical-cavity surface-emitting lasers. The assumption that the losses are dominated by free-carrier absorption in the p-doped mirror is made. Developing a new theoretical approach, we are able to predict different polarization switching regimes in which switching occurs from the high- to the low-frequency mode, from the low- to the high-frequency mode, or both consecutively. All these predictions have been experimentally verified by our measurements on GaAs/AlGaAs proton-implanted vertical-cavity surface-emitting lasers.

© 1999 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers
(260.5430) Physical optics : Polarization

B. Ryvkin, K. Panajotov, A. Georgievski, J. Danckaert, M. Peeters, G. Verschaffelt, H. Thienpont, and I. Veretennicoff, "Effect of photon-energy-dependent loss and gain mechanisms on polarization switching in vertical-cavity surface-emitting lasers," J. Opt. Soc. Am. B 16, 2106-2113 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, “Polarization and transverse mode characteristics of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 27, 1402–1408 (1991). [CrossRef]
  2. A. K. Jansen van Doorn, M. P. van Exter, and J. P. Woerdman, “Elasto-optic anisotropy and polarization orientation of vertical-cavity surface-emitting semiconductor lasers,” Appl. Phys. Lett. 69, 1041–1043 (1996). [CrossRef]
  3. K. D. Choquette, D. A. Richie, and R. E. Leibenguth, “Temperature dependence of gain-guided of vertical-cavity surface-emitting laser polarization,” Appl. Phys. Lett. 64, 2062–2064 (1994). [CrossRef]
  4. K. D. Choquette, K. L. Lear, R. E. Leibenguth, and M. T. Asom, “Polarization modulation of vertical-cavity laser diodes,” Appl. Phys. Lett. 64, 2767–2769 (1994). [CrossRef]
  5. K. Panajotov, B. Ryvkin, J. Danckaert, M. Peeters, H. Thienpont, and I. Veretennicoff, “Polarization switching in VCSELs due to thermal lensing,” IEEE Photon. Technol. Lett. 10, 6–8 (1998). [CrossRef]
  6. M. P. van Exter, A. K. Jansen van Doorn, and J. P. Woerdman, “Electro-optic effect and birefringence in semiconductor vertical-cavity lasers,” Phys. Rev. A 51, 845–853 (1997). [CrossRef]
  7. J. Martin-Regalado, J. L. A. Chilla, J. J. Rocca, and P. Brusenbach, “Polarization switching in vertical-cavity surface-emitting lasers observed at constant active region temperature,” Appl. Phys. Lett. 70, 3350–3352 (1997). [CrossRef]
  8. M. P. van Exter, A. Al-Remawi, and J. P. Woerdman, “Polarization fluctuations demonstrate nonlinear anisotropy of a vertical-cavity semiconductor laser,” Phys. Rev. Lett. 80, 4875–4878 (1998). [CrossRef]
  9. M. San Miguel, O. Feng, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52, 1728–1739 (1996). [CrossRef]
  10. J. Martin-Regalado, M. San Miguel, N. B. Abraham, and F. Prati, “Polarization switching in quantum-well vertical-cavity surface-emitting lasers,” Opt. Lett. 21, 351–353 (1996). [CrossRef] [PubMed]
  11. T. Erneux, J. Danckaert, K. Panajotov, and I. Veretennicoff, “Two variable reduction of the San Miguel–Feng–Moloney model for vertical-cavity surface-emitting lasers,” Phys. Rev. A 59, 4660–4667 (1999). [CrossRef]
  12. A. Valle, L. Pesquera, and K. S. Shore, “Polarization behaviour of birefringent multi-transverse mode vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 9, 557–559 (1997). [CrossRef]
  13. J. Martin-Regalado, S. Balle, M. San Miguel, A. Valle, and L. Pesquera, “Polarization and transverse-mode selection in quantum-well vertical-cavity surface-emitting lasers: index- and gain guided devices,” Quantum Semiclass. Opt. 9, 713–736 (1997). [CrossRef]
  14. S. Balle, E. Tolkachova, M. San Miguel, J. R. Tredicce, J. Martin-Regalado, and A. Gahl, “Mechanisms of polarization switching in single-transverse-mode verticalcavity surface-emitting lasers: thermal shift and nonlinear semiconductor dynamics,” Opt. Lett. 24, 1121–1123 (1999). [CrossRef]
  15. B. Ryvkin and A. Georgievskii, “Polarization selection in VCSELs due to current carrier heating,” Semiconductors 33, 813–819 (1999). [CrossRef]
  16. T. E. Sale, Vertical Cavity Surface Emitting Lasers (Wiley, New York, 1995).
  17. M. H. MacDougal, P. D. Dapkus, A. E. Bond, C. K. Lin, and J. Geske, “Design and fabrication of VCSELs with AlxOy–GaAs DBR’s,” IEEE J. Sel. Top. Quantum Electron. 3, 905–915 (1997). [CrossRef]
  18. A. H. Kahn, “Theory of the infrared absorption of carriers in germanium and silicon,” Phys. Rev. 97, 1647–1652 (1955). [CrossRef]
  19. O. Christensen, “Absorption from neutral acceptors in GaAs and GaP,” Phys. Rev. B 7, 1426–1432 (1973). [CrossRef]
  20. R. F. Kazarinov, “Maximum reduction of the threshold current density in double-heterojunction injection lasers,” Sov. Phys. Semicond. 7, 525–531 (1973).
  21. G. E. Giudice, D. V. Kuksenkov, and H. Temkin, “Measurement of differential carrier lifetime in vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 10, 920–922 (1998). [CrossRef]
  22. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995).
  23. Vixel Corporation, 325 Interlocken Parkway, Broomfield, Colo. 80021.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited