OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 16, Iss. 11 — Nov. 1, 1999
  • pp: 2140–2146

Spatial quantum noise of semiconductor lasers

J.-P. Hermier, A. Bramati, A. Z. Khoury, E. Giacobino, J.-Ph. Poizat, T. J. Chang, and Ph. Grangier  »View Author Affiliations


JOSA B, Vol. 16, Issue 11, pp. 2140-2146 (1999)
http://dx.doi.org/10.1364/JOSAB.16.002140


View Full Text Article

Enhanced HTML    Acrobat PDF (158 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The transverse distribution of intensity noise in the far field of semiconductor lasers has been experimentally studied. For a single-mode edge-emitting laser, it has been found that a large amount of noise is present in higher-order nonlasing transverse modes parallel to the diode junction. In the case of a spatially multimode vertical-cavity surface-emitting laser, each mode exhibits a large noise, but these noises show strong anticorrelations.

© 1999 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.5440) Optical devices : Polarization-selective devices
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers
(270.6570) Quantum optics : Squeezed states

Citation
J.-P. Hermier, A. Bramati, A. Z. Khoury, E. Giacobino, J.-Ph. Poizat, T. J. Chang, and Ph. Grangier, "Spatial quantum noise of semiconductor lasers," J. Opt. Soc. Am. B 16, 2140-2146 (1999)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-16-11-2140


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Machida, Y. Yamamoto, and Y. Itaya, “Observation of amplitude squeezing in a constant-current-driven semiconductor laser,” Phys. Rev. Lett. 58, 1000–1003 (1987). [CrossRef] [PubMed]
  2. S. Inoue, H. Ohzu, S. Machida, and Y. Yamamoto, “Quantum correlation between longitudinal-mode intensities in a multimode squeezed semiconductor laser,” Phys. Rev. A 46, 2757–2765 (1992). [CrossRef] [PubMed]
  3. H. Wang, M. J. Freeman, and D. G. Steel, “Squeezed light from injection-locked quantum well lasers,” Phys. Rev. Lett. 71, 3951–3954 (1993). [CrossRef] [PubMed]
  4. F. Marin, A. Bramati, E. Giacobino, T.-C. Zhang, J.-Ph. Poizat, J.-F. Roch, and P. Grangier, “Squeezing and intermode correlations in laser diodes,” Phys. Rev. Lett. 75, 4606–4609 (1995). [CrossRef] [PubMed]
  5. Yu. M. Golubev and I. V. Sokolov, “Photon antibunching in a coherent light source and suppression of the photorecording noise,” Sov. Phys. JETP 60, 234–238 (1984).
  6. Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise-suppressed laser oscillator,” Phys. Rev. A 34, 4025–4042 (1986). [CrossRef] [PubMed]
  7. A. W. Smith and J. A. Armstrong, “Intensity noise in multimode GaAs laser emission,” IBM Syst. J. 10, 225–232 (1966). [CrossRef]
  8. D. Pieroux and P. Mandel, “Transient dynamics of a multimode laser: oscillation frequencies and decay rates,” Opt. Commun. 107, 245–248 (1994). [CrossRef]
  9. K. Otsuka, D. Pieroux, and P. Mandel, “Modulation dynamics in a multimode laser with feedback,” Opt. Commun. 108, 273–277 (1994). [CrossRef]
  10. G. P. Agrawal and N. K. Dutta, Semiconductor Lasers (Van Nostrand Reinhold, New York, 1993).
  11. C. Becher, E. Gehrig, and K.-J. Boller, “Spectrally asymmetric mode correlation and intensity noise in pump-noise-suppressed laser diodes,” Phys. Rev. A 57, 3952–3960 (1998). [CrossRef]
  12. S. Lathi and Y. Yamamoto, “Influence of nonlinear gain and loss on the intensity noise of a multimode semiconductor laser,” Phys. Rev. A 59, 819–825 (1999). [CrossRef]
  13. D. C. Kilper, D. G. Steel, R. Craig, and D. R. Scifres, “Polarization-dependent noise in a photon-number squeezed light generated by quantum-well lasers,” Opt. Lett. 21, 1283–1285 (1996). [CrossRef] [PubMed]
  14. E. Goobar, J. W. Scott, B. Thibeault, G. Robinson, Y. Akulova, and L. A. Coldren, “Noise in homodyne and heterodyne detection,” Appl. Phys. Lett. 67, 3697–3699 (1995). [CrossRef]
  15. D. C. Kilper, P. A. Roos, J. L. Carlsten, and K. L. Lear, “Squeezed light generated by a microcavity laser,” Phys. Rev. A 55, R3323–R3326 (1997). [CrossRef]
  16. F. Marin and G. Giacomelli, “Polarization and transverse mode dynamics of VCSELs,” Quantum Semiclassic. Opt. 1, 128–132 (1999). [CrossRef]
  17. A. Bramati, J.-P. Hermier, A. Z. Khoury, E. Giacobino, P. Schnitzer, R. Michalzik, K. J. Ebeling, J.-Ph. Poizat, and Ph. Grangier, “Spatial distribution of the intensity noise of a vertical-cavity surface-emitting laser,” Opt. Lett. 24, 893–895 (1999). [CrossRef]
  18. C. C. Harb, T. C. Ralph, E. H. Huntington, D. E. McClelland, H.-A. Bachor, and I. Freitag, “Intensity-noise dependence of Nd:YAG lasers on their diode-laser pump source,” J. Opt. Soc. Am. B 14, 2936–2945 (1997). [CrossRef]
  19. J.-Ph. Poizat, T.-J. Chang, O. Ripoll, and Ph. Grangier, “Spatial quantum noise of laser diodes,” J. Opt. Soc. Am. B 15, 1757–1761 (1998). [CrossRef]
  20. We assume that operation involves the first two transverse modes with Hermite–Gauss profiles, which corresponds to the experimental situation, both for VCSEL’s and for edge-emitting lasers.
  21. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge U. Press, Cambridge, UK, 1997).
  22. M. D. Levenson, W. H. Richardson, and S. H. Perlmutter, “Stochastic noise in TEM00 laser beam position,” Opt. Lett. 14, 779–781 (1989); M. D. Levenson, S. H. Perlmutter, andW. H. Richardson, “Stochastic position noise, or why a laser beam cannot go straight,” in Quantum Optics V, J. D. Harvey and D. F. Walls, eds. (Springer-Verlag, Heidelberg, 1989). [CrossRef] [PubMed]
  23. D. Wiedenmann, P. Schnitzer, C. Jung, M. Grabherr, R. Jäger, R. Michalzik, and K. J. Ebeling, “Noise characteristics of 850 nm single-mode vertical cavity surface emitting lasers,” Appl. Phys. Lett. 73, 717–719 (1998). [CrossRef]
  24. H. P. Yuen and V. W. S. Chan, “Noise in homodyne and heterodyne detection,” Opt. Lett. 8, 177–179 (1983). [CrossRef] [PubMed]
  25. M. J. Freeman, H. Wang, D. G. Steel, R. Craig, and D. R. Scifres, “Wavelength-tunable amplitude-squeezed light from a room-temperature quantum-well laser,” Opt. Lett. 18, 2141–2143 (1993). [CrossRef] [PubMed]
  26. K. Petermann, “Calculated spontaneous emission factor for double-heterostructure injection lasers with gain-induced waveguiding,” IEEE J. Quantum Electron. QE-15, 566–570 (1979). [CrossRef]
  27. H. A. Haus and S. Kawakami, “On the ‘excess spontaneous emission factor’ in gain-guided laser amplifiers,” IEEE J. Quantum Electron. QE-21, 63–69 (1985). [CrossRef]
  28. A. E. Siegman, “Excess spontaneous emission in non-Hermitian optical systems. I. Laser amplifiers,” Phys. Rev. A 39, 1253–1263 (1989); “Excess spontaneous emission in non-Hermitian optical systems. I. Laser oscillators,” 39, 1264–1268 (1989); see also Lasers (University Science, Mill Valley, Calif., 1986). [CrossRef] [PubMed]
  29. Ph. Grangier and J.-Ph. Poizat, “A simple quantum picture for the Petermann excess noise factor,” Eur. Phys. J. D 1, 97–104 (1998); “Quantum derivation of the excess noise factor in lasers with nonorthogonal eigenmodes,” Eur. Phys. J. D. (to be published). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited