OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 16, Iss. 12 — Dec. 1, 1999
  • pp: 2207–2216

High beam quality of ultraviolet radiation generated through resonant enhanced frequency doubling of a diode laser

Anish K. Goyal, Jayant D. Bhawalkar, Yves Conturie, Paul Gavrilovic, Yalan Mao, Hong Po, and John Guerra  »View Author Affiliations

JOSA B, Vol. 16, Issue 12, pp. 2207-2216 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (303 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The infrared emission from an external-cavity-tapered diode laser is frequency doubled in a 5-mm β-BaB2O4 crystal that is placed in a resonant-enhancement cavity. For a coupled diode power of 535 mW, 100 mW of continuous-wave, second-harmonic power is generated at λ=392 nm. The ultraviolet (UV) beam is measured to have a nearly ideal beam-quality parameter, M21, in both meridians even though substantial double refraction is present in the nonlinear crystal. Printing of an array of submicron dots on a phase-change film is demonstrated with this UV beam. Also, by printing on photochemical film we demonstrate that improved film sensitivity is possible when a UV source is used.

© 1999 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.4780) Lasers and laser optics : Optical resonators
(190.2620) Nonlinear optics : Harmonic generation and mixing

Anish K. Goyal, Jayant D. Bhawalkar, Yves Conturie, Paul Gavrilovic, Yalan Mao, Hong Po, and John Guerra, "High beam quality of ultraviolet radiation generated through resonant enhanced frequency doubling of a diode laser," J. Opt. Soc. Am. B 16, 2207-2216 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Goldberg and D. Mehuys, “Blue light generation using a high power tapered amplifier mode-locked laser,” Appl. Phys. Lett. 65, 522–524 (1994). [CrossRef]
  2. E. J. Lim, M. M. Fejer, R. L. Byer, and W. J. Kozlovsky, “Blue light generation by frequency doubling in periodically poled lithium niobate channel waveguide,” Electron. Lett. 25, 731–732 (1989). [CrossRef]
  3. Y. Kitaoka, K. Yamamoto, K. Mizuuchi, K. Narumi, and M. Kato, “Blue second-harmonic generation waveguide device and its application to high-density optical disk,” in Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CWG1.
  4. A. Ashkin, G. D. Boyd, and J. M. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. QE-2, 109–123 (1966). [CrossRef]
  5. W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988). [CrossRef]
  6. J. D. Bhawalkar, Y. Mao, H. Po, A. K. Goyal, P. Gavrilovic, Y. Conturie, and S. Singh, “High-power 390-nm laser source based on efficient frequency doubling of a tapered diode laser in an external resonant cavity,” Opt. Lett. 24, 823–825 (1999). [CrossRef]
  7. D. Woll, B. Beier, K.-J. Boller, R. Wallenstein, M. Hagberg, and S. O’Brien, “1 W of blue 465-nm radiation generated by frequency doubling of the output of a high-power diode laser in critically phase-matched LiB3O5,” Opt. Lett. 24, 691–693 (1999). [CrossRef]
  8. J. N. Walpole, “Semiconductor amplifiers and lasers with tapered gain regions,” Opt. Quantum Electron. 28, 623–645 (1996), and references therein. [CrossRef]
  9. C. T. Chen, B. Wu, A. Jiang, and G. You, “A new type ultraviolet SHG crystal β-BaB2O4,” Sci. Sin. Ser. B 28, 235–243 (1985).
  10. C. T. Chen, Y. Wu, A. Jiang, B. Wu, G. You, R. Li, and S. Lin, “New nonlinear-optical crystal: LiB3O5,” J. Opt. Soc. Am. B 6, 616–621 (1989). [CrossRef]
  11. A. Hemmerich, D. H. McIntyre, C. Zimmermann, and T. W. Hänsch, “Second-harmonic generation and optical stabilization of a diode laser in an external ring resonator,” Opt. Lett. 15, 372–374 (1990). [CrossRef] [PubMed]
  12. K. Hayasaka, M. Watanabe, H. Imajo, R. Ohmukai, and S. Urabe, “Tunable 397 nm light source for laser cooling of Ca ions based on frequency doubling of diode laser,” Jpn. J. Appl. Phys. 33, 1595–1598 (1994). [CrossRef]
  13. M. G. Boshier, Precise Laser Spectroscopy of the Hydrogen 1S–2S Transition, Ph.D. dissertation (University of Oxford, London, UK, 1988).
  14. D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992). [CrossRef]
  15. C. S. Adams and A. I. Ferguson, “Tunable narrow linewidth ultra-violet light generation by frequency doubling of a ring Ti:sapphire laser using lithium triborate in an external enhancement cavity,” Opt. Commun. 90, 89–94 (1992). [CrossRef]
  16. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968). [CrossRef]
  17. Replacement tapered gain element, part SDL-8630E, SDL, Inc., San Jose, Calif. 95134.
  18. A. K. Goyal, P. Gavrilovic, and H. Po, “Stable single-frequency operation of a high-power external cavity tapered diode laser at 780 nm,” Appl. Phys. Lett. 71, 1296–1298 (1997). [CrossRef]
  19. A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986). For a discussion of the delta notation in characterizing resonant-cavity losses, see Sections 11.4 and 11.5; for ABCD matrices and their application to paraxial beams, see Chapters 15 and 20; and for resonator design using ABCD matrices, see Chapter 21.
  20. T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980). [CrossRef]
  21. S. O’Brien, D. F. Welch, R. A. Parke, D. Mehuys, K. Dzurko, R. J. Lang, R. Waarts, and D. Scifres, “Operating characteristics of a high-power monolithically integrated flared amplifier master oscillator power amplifier,” IEEE J. Quantum Electron. 29, 2052–2057 (1993). [CrossRef]
  22. D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987). [CrossRef]
  23. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965). [CrossRef]
  24. BeamScan Model 1180 single-axis slit profiler with 2.5 μm slit width and silicon detector. Photon Inc., 1115 Space Park Drive, Santa Clara, Calif. 95054.
  25. A. E. Siegman, “New developments in laser resonators,” Proc. SPIE 1224, 2–14 (1990). [CrossRef]
  26. T. F. Johnston, Jr., “Calibration accuracy check to <0.5% of a BeamScan profiler, using Fresnel diffraction by a wide slit,” Application Note 240 (Photon Inc., 1115 Space Park Drive, Santa Clara, Calif. 95054).
  27. J. M. Guerra, “Photon tunneling microscopy,” Appl. Opt. 29, 3741–3752 (1990). [CrossRef] [PubMed]
  28. B. Beier, D. Woll, M. Scheidt, K.-J. Boller, and R. Wallenstein, “Second harmonic generation of the output of an AlGaAs diode oscillator amplifier system in critically phase matched LiB3O5 and β-BaB2O4,” Appl. Phys. Lett. 71, 315–317 (1997). [CrossRef]
  29. C. C. Pohalski, “Efficient resonant harmonic generation of high-power cw lasers,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited