OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 16, Iss. 12 — Dec. 1, 1999
  • pp: 2223–2232

Analyses of coherence-maintained ultrashort optical pulse trains and supercontinuum generation in the presence of soliton–amplified spontaneous-emission interaction

Hirokazu Kubota, Kohichi R. Tamura, and Masataka Nakazawa  »View Author Affiliations

JOSA B, Vol. 16, Issue 12, pp. 2223-2232 (1999)

View Full Text Article

Acrobat PDF (507 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Coherence degradation in the soliton pulse-compression process and supercontinuum generation in the presence of amplified spontaneous emission are studied with numerical simulations. We have developed a new simulation method to study the quality of a pulse train and use numerical simulations to present three ways to suppress its coherence degradation. We point out that a simple measurement of the pulse train’s power spectrum does not fully represent the quality of the pulse train because it does not contain detailed information on noise.

© 1999 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(320.5520) Ultrafast optics : Pulse compression

Hirokazu Kubota, Kohichi R. Tamura, and Masataka Nakazawa, "Analyses of coherence-maintained ultrashort optical pulse trains and supercontinuum generation in the presence of soliton–amplified spontaneous-emission interaction," J. Opt. Soc. Am. B 16, 2223-2232 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. M. Nakazawa, E. Yoshida, and K. Tamura, “10 GHz, 2 ps regeneratively and harmonically FM mode-locked erbium fiber ring laser,” Electron. Lett. 32, 1285–1287 (1996).
  2. H. Tanaka, S. Kawanishi, and M. Saruwatari, “20 GHz transform-limited optical pulse generation and bit-error-free operation using a tunable, actively modelocked Er-doped fiber ring laser,” Electron. Lett. 29, 1149–1150 (1993).
  3. E. B. Treacy, “Optical pulse compression with diffracting gratings,” IEEE J. Quantum Electron. 5, 454–458 (1969).
  4. W. J. Tomlinson, R. H. Stolen, and C. V. Shank, “Compression of optical pulses chirped by self-phase modulation in fibers,” J. Opt. Soc. Am. B 1, 139–149 (1984).
  5. A. S. Gouveia-Neto, A. S. L. Gomes, and J. R. Taylor, “High-order soliton pulse compression and splitting at 1.32 μm in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1193–1198 (1987).
  6. T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, “Nearly penalty-free, <4 ps supercontinuum Gbit/s pulse generation over 1535–1560 nm,” Electron. Lett. 30, 790–791 (1994).
  7. K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with a convex dispersion profile,” Electron. Lett. 33, 1806–1808 (1997).
  8. T. Okuno, M. Onishi, and M. Nishimura, “Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber,” IEEE Photonics Technol. Lett. 10, 72–74 (1998).
  9. K. Mori, H. Takara, and S. Kawanishi, “The effect of pump fluctuation in supercontinuum pulse generation,” in Nonlinear Guided Waves and Their Applications, Vol. 5 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 276.
  10. H. Kubota and M. Nakazawa, “Soliton transmission control in time and frequency domains,” IEEE J. Quantum Electron. 29, 2189–2197 (1993); “Soliton transmission control for ultra high speed system,” IEICE Trans. Electron. E78-C, 5–11 (1995).
  11. M. Nakazawa, K. Suzuki, H. Kubota, and H. A. Haus, “High-order solitons and modulation instability,” Phys. Rev. 39, 5768–5776 (1989).
  12. G. P. Agrawal and M. J. Potasek, “Nonlinear pulse distortion in single-mode optical fibers at the zero-dispersion wavelength,” Phys. Rev. A 33, 1765–1776 (1986).
  13. M. J. Potasek, G. P. Agrawal, and S. C. Pinault, “Numerical study of pulse broadening in nonlinear dispersive optical fibers,” J. Opt. Soc. Am. B 3, 205–211 (1986).
  14. A. Sahara, H. Kubota, and M. Nakazawa, “Q factor contour mapping for evaluation of optical transmission systems: soliton against NRZ against RZ pulse at zero group velocity dispersion,” Electron. Lett. 32, 915–916 (1996).
  15. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge U. Press, Cambridge, 1986).
  16. J. P. Gordon and H. A. Haus, “Random walk of coherently amplified solitons in optical fiber transmission,” Opt. Lett. 33, 665–667 (1986).
  17. K. Tamura and M. Nakazawa, “Timing jitter of solitons compressed in dispersion-decreasing fibers,” Opt. Lett. 23, 1360–1362 (1998).
  18. K. Tai, A. Hasegawa, and N. Bekki, “Fission of optical solitons induced by stimulated Raman effect,” Opt. Lett. 13, 392–394 (1988).
  19. N. J. Smith and N. J. Doran, “Modulational instabilities in fibers with periodic dispersion management,” Opt. Lett. 21, 570–572 (1996).
  20. L. F. Mollenauer, E. Lichtman, M. J. Newbelt, and G. T. Harvey, “Demonstration, using sliding-frequency guiding filter, of error-free soliton transmission over more than 20Mm at 10 Gbit/s, single channel, and over more than 13Mm at 20 Gbit/s in a two-channel WDM,” Electron. Lett. 29, 910–911 (1993).
  21. R. L. Fork, C. V. Shank, C. Hirlimann, R. Yen, and W. J. Tomlinson, “Femtosecond white-light continuum pulses,” Opt. Lett. 8, 1–3 (1983).
  22. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).
  23. H. E. Lassen, F. Mengel, B. Tromborg, N. C. Albertson, and P. L. Christiansen, “Evolution of chirped pulses in nonlinear single-mode fibers,” Opt. Lett. 10, 34–36 (1985).
  24. M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherence degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Technol.: Mater., Devices Syst. 4, 215–223 (1998).
  25. K. Tamura, E. Yoshida, and M. Nakazawa, “Generation of a 10 GHz pulse train at 16 wavelengths by spectrally slicing a high power femtosecond source,” Electron. Lett. 32, 1691–1692 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited