OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 16, Iss. 12 — Dec. 1, 1999
  • pp: 2255–2268

Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD

Long-Sheng Ma, Jun Ye, Pierre Dubé, and John L. Hall  »View Author Affiliations


JOSA B, Vol. 16, Issue 12, pp. 2255-2268 (1999)
http://dx.doi.org/10.1364/JOSAB.16.002255


View Full Text Article

Enhanced HTML    Acrobat PDF (270 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The sensitivity of FM spectroscopy can be dramatically enhanced by location of the sample in a high-finesse cavity, for example, ∼5 orders of magnitude in this study. To avoid conversion of laser frequency noise into amplitude noise by the cavity, we choose the rf modulation frequency to match the cavity’s free spectral range. In this way small frequency fluctuations produce no additional noise, and a pure FM dispersion signal is recovered in transmission. We present a systematic study of the detection sensitivity, signal line shape and size, and slope at the central tuning. Experimentally, using a weakly absorbing gas such as C2H2 or C2HD placed inside an external high-finesse resonator, we obtained an integrated absorption sensitivity of 5×10-13(1×10-14/cm) for the gas’s weak near-IR molecular overtone transitions. As an interesting application, a Nd:YAG laser was well stabilized on the P(5) line of the C2HD(ν2+3ν3) band by this technique. The high attainable sensitivity permitted selection of slow molecules with low power and gas pressure to give a linewidth 13 times below the room-temperature transit-time limit.

OCIS Codes
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6360) Spectroscopy : Spectroscopy, laser
(300.6380) Spectroscopy : Spectroscopy, modulation

Citation
Long-Sheng Ma, Jun Ye, Pierre Dubé, and John L. Hall, "Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD," J. Opt. Soc. Am. B 16, 2255-2268 (1999)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-16-12-2255


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Under shot-noise-limited conditions, the minimum detectable absorption is ΔαL=2[hνB/(ηP0)]1/2/[J0(β)J1(β)]= 3.2×10−7, where P0=0.1 mW, B=1 Hz, β=1, λ=790.7 nm, and η=0.8.
  2. M. Zhu and J. L. Hall, “Stabilization of optical frequency/phase of a laser system: application to a commercial dye laser with an external stabilizer,” J. Opt. Soc. Am. B 10, 802–816 (1993). [CrossRef]
  3. P. Jungner, S. Swartz, M. Eickhoff, J. Ye, J. L. Hall, and S. Waltman, “Absolute frequency of the molecular iodine transition R(56)32–0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995); P. Jungner, M. Eickhoff, S. Swartz, J. Ye, J. L. Hall, and S. Waltman, “Stability and absolute frequency of molecular iodine transitions near 532 nm,” in Laser Frequency Stabilization and Noise Reduction, Y. Shevy, ed., Proc. SPIE 2378, 22–34 (1995); J. L. Hall, L.-S. Ma, M. Taubman, B. Tiemann, F. L. Hong, O. Pfister, and J. Ye, “Stabilization and frequency measurement of the I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas.IEIMAO 48, 583–586 (1999). [CrossRef]
  4. M. de Labachelerie, K. Nakagawa, and M. Ohtsu, “Ultranarrow 13C2H2 saturated absorption lines at 1.5 μm,” Opt. Lett. 19, 840–842 (1994); M. de Labachelerie, K. Nakagawa, Y. Awaji, and M. Ohtsu, “High-frequency-stability laser at 1.5 μm using Doppler-free molecular lines,” Opt. Lett. 20, 572–574 (1995); K. Nakagawa, M. de Labachelerie, Y. Awaji, and M. Kurogi, “Accurate optical frequency atlas of the 1.5-μm bands of acetylene,” J. Opt. Soc. Am. B JOBPDE 13, 2708–2714 (1996). [CrossRef] [PubMed]
  5. L. S. Ma, P. Dubé, J. Ye, and J. L. Hall, “Saturation spectroscopy of molecular overtones for laser frequency standards in the visible and near-visible domain,” in Quantum Electronics and Laser Science Conference, Vol. 16 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. 18.
  6. P. Cerez, A. Brillet, C. N. Man-Pichot, and R. Felder, “He–Ne lasers stabilized by saturated absorption in iodine at 612 nm,” IEEE Trans Instrum. Meas. 29, 352–354 (1980). [CrossRef]
  7. L. S. Ma and J. L. Hall, “Optical heterodyne spectroscopy enhanced by an external optical cavity: toward improved working standards,” IEEE J. Quantum Electron. 26, 2006–2012 (1990). [CrossRef]
  8. L. S. Ma, J. Ye, P. Dubé, and J. L. Hall, “A new modulation method for sensitive nonlinear spectroscopy—application to molecular overtones as visible frequency references,” in Laser Spectroscopy XII, M. Inguscio, M. Allegrini, and A. Sasso, eds. (World Scientific, Singapore, 1995), pp. 199–203; J. L. Hall, J. Ye, L.-S. Ma, S. Swartz, P. Jungner, and S. Waltman, “Optical frequency standards—some improvements, some measurements, and some dreams,” in Fifth Symposium on Frequency Standards & Metrology, J. C. Bergquist, ed. (World Scientific, Singapore, 1995), pp. 267–276.
  9. J. Ye, L.-S. Ma, and J. L. Hall, “Sub-Doppler optical frequency reference at 1.064 μm via ultrasensitive cavity-enhanced frequency modulation spectroscopy of C2HD overtone transition,” Opt. Lett. 21, 1000–1002 (1996). [CrossRef] [PubMed]
  10. J. Ye, L.-S. Ma, and J. L. Hall, “Ultrastable optical frequency reference at 1.064 μm using C2HD molecular overtone reference,” IEEE Trans Instrum. Meas. 46, 178–182 (1997). [CrossRef]
  11. C. J. Bordé, J. L. Hall, C. V. Kunasz, and D. G. Hummer, “Saturated absorption line shape. Calculation of the transit-time broadening by a perturbation approach,” Phys. Rev. A 14, 236–263 (1976). [CrossRef]
  12. V. S. Letokhev and V. P. Chebotayev, Nonlinear Laser Spectroscopy (Springer-Verlag, Berlin, 1977).
  13. J. Vander Auwera, D. Hurtmans, M. Carleer, and M. Herman, “The ν3 fundamental in C2H2,” J. Mol. Spectrosc. 157, 337–357 (1993). [CrossRef]
  14. M. de Labachelerie, K. Nakagawa, and M. Ohtsu, “Ultranarrow 13C2H2 saturated absorption lines at 1.5 μm,” Opt. Lett. 19, 840–842 (1994). [CrossRef] [PubMed]
  15. M. A. Temsamani, J. V. Auwera, and M. Herman, “The absorption spectrum of C2HD between 9000 and 13 000 cm−1,” Mol. Phys. 79, 359–371 (1993). [CrossRef]
  16. F. S. Pavone, F. Marin, M. Inguscio, K. Ernst, and G. Di Lonardo, “Sensitive detection of acetylene absorption in the visible by using a stabilized AlGaAs diode laser,” Appl. Opt. 32, 259–262 (1993). [CrossRef] [PubMed]
  17. G. T. Scherer, K. K. Lehmann, and W. Klemperer, “The high resolution visible overtone spectrum of acetylene,” J. Chem. Phys. 78, 2817–2832 (1983); K. K. Lehmann, “The absolute intensity of visible overtone bands of acetylene,” J. Chem. Phys. 91, 2759–2760 (1989). [CrossRef]
  18. R. L. Smith, “Practical solutions of the lock-in detection problem for Lorentz and dispersion resonance signals,” J. Opt. Soc. Am. 61, 1015–1022 (1971); H. Wahlquist, “Modulation broadening of unsaturated Lorentzian lines,” J. Chem. Phys. 35, 1708–1710 (1961). [CrossRef]
  19. S. Stenholm, Foundation of Laser Spectroscopy (Wiley, New York, 1983).
  20. J. F. Kelly and A. Gallagher, “Efficient electro-optic modulator for optical pumping of Na beams,” Rev. Sci. Instrum. 58, 563–566 (1987). [CrossRef]
  21. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983). [CrossRef]
  22. J. Ye, L.-S. Ma, and J. L. Hall, “Ultrasensitive high resolution laser spectroscopy and its application to optical frequency standards,” in Proceedings of the 28th Annual Precise Time and Time Inteval (PTTI) Applications and Planning Meeting, L. A. Breakiron, ed. (U.S. Naval Observatory, Washington, D.C., 1997), pp. 289–303.
  23. M. L. Eickhoff and J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans Instrum. Meas. 44, 155–158 (1995). [CrossRef]
  24. L.-S. Ma, Ph. Courteille, G. Ritter, W. Neuhauser, and R. Blatt, “Precision laser spectrometer with multiple frequency modulation,” in Digest of International Quantum Electronics Conference (Optical Society of America, Washington, D.C., 1994), p. 61; Ph. Courteille, L.-S. Ma, G. Ritter, W. Neuhauser, and R. Blatt, “Frequency measurement of Te2 resonances near 467 nm,” Appl. Phys. B 59, 187–193 (1994). [CrossRef]
  25. S. N. Bagayev, V. P. Chebotayev, A. K. Dmitriyev, A. E. Om, Yu. V. Nekrasov, and B. N. Skvortsov, “Second-order Doppler-free spectroscopy,” Appl. Phys. B: Photophys. Laser Chem. 52, 63–66 (1991); Ch. Chardonnet, F. Guernet, G. Charton, and Ch. J. Bordé, “Ultrahigh-resolution saturation spectroscopy using slow molecules in an external cell,” Appl. Phys. B 59, 333–343 (1994). [CrossRef]
  26. J. Ye, “Ultrasensitive high resolution laser spectroscopy and its application to optical frequency standards,” Ph.D. dissertation (University of Colorado at Boulder, Boulder, Colo., 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited