OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 16, Iss. 2 — Feb. 1, 1999
  • pp: 219–227

Physical origin of laser frequency scanning induced by photorefractive phase-conjugate feedback

Martin Løbel, Paul M. Petersen, and Per M. Johansen  »View Author Affiliations

JOSA B, Vol. 16, Issue 2, pp. 219-227 (1999)

View Full Text Article

Acrobat PDF (303 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present numerical simulations of the complex grating structure that is generated when several longitudinal modes from a laser induce a self-pumped phase conjugator in a photorefractive barium titanate crystal. The results of the numerical analysis clearly show that the detuning curve of the generated grating structure is asymmetric with respect to the center wavelength of the laser that induced it. The asymmetric feedback to the laser, which is generated by diffraction in the gratings of the structure, initiates the frequency scanning of the laser. It is found that the material frequency dispersion of the barium titanate crystal causes the asymmetry and is the origin that initiates the scanning process. The theoretical predictions are in agreement with the reported experimental observations.

© 1999 Optical Society of America

OCIS Codes
(140.3460) Lasers and laser optics : Lasers
(190.2640) Nonlinear optics : Stimulated scattering, modulation, etc.
(190.5040) Nonlinear optics : Phase conjugation
(190.5330) Nonlinear optics : Photorefractive optics
(260.2030) Physical optics : Dispersion

Martin Løbel, Paul M. Petersen, and Per M. Johansen, "Physical origin of laser frequency scanning induced by photorefractive phase-conjugate feedback," J. Opt. Soc. Am. B 16, 219-227 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. M. Cronin-Golomb and A. Yariv, “Self-induced frequency scanning and distributed Bragg reflection in semiconductor lasers with phase-conjugate feedback,” Opt. Lett. 11, 455 (1986).
  2. F. C. Jahoda, P. G. Weber, and J. Feinberg, “Optical feedback, wavelength response, and interference effects of a self-pumped phase conjugation in BaTiO3,” Opt. Lett. 9, 362 (1984).
  3. W. B. Whitten and J. M. Ramsey, “Self-scanning of a dye laser due to feedback from a BaTiO3 phase-conjugate reflector,” Opt. Lett. 9, 44 (1984).
  4. J. Feinberg and G. D. Bacher, “Self-scanning of a continuous-wave dye laser having a phase-conjugating resonator cavity,” Opt. Lett. 9, 420 (1984).
  5. J. M. Ramsey and W. B. Whitten, “Phase-conjugate feedback into a continuous-wave ring dye laser,” Opt. Lett. 10, 362 (1985).
  6. M. Lobel, P. M. Petersen, and P. M. Johansen, “Suppressing self-induced frequency scanning of a phase conjugate diode laser array using counterbalance dispersion,” Appl. Phys. Lett. 72, 1263 (1998).
  7. A. Shiratori and M. Obara, “Frequency-stable, narrow linewidth oscillation of red diode laser with phase-conjugate feedback using stimulated photorefractive backscattering,” Appl. Phys. Lett. 69, 1515 (1997).
  8. J. Feinberg, “Self-pumped, continuous-wave phase conjugator using internal reflections,” Opt. Lett. 7, 486 (1982).
  9. M. Cronin-Golomb, K. Y. Lau, and A. Yariv, “Infrared photorefractive passive phase conjugation with BaTiO3: demonstrations with GaAlAs and 1.09-μm Ar+ lasers,” Appl. Phys. Lett. 47, 567 (1985).
  10. A. A. Zozulya, M. Saffman, and D. Anderson, “Double phase-conjugate mirror: convection and diffraction,” J. Opt. Soc. Am. B 12, 255 (1995).
  11. A. A. Zozulya, M. Saffman, and D. Z. Anderson, “Propagation of light beams in photorefractive media: fanning, self-bending, and formation of self-pumped four-wave-mixing phase conjugation geometries,” Phys. Rev. Lett. 73, 818 (1994).
  12. A. A. Zozulya, G. Montemezzani, and D. Z. Anderson, “Analysis of total-internal-reflection phase-conjugate mirror,” Phys. Rev. A 52, 4167 (1995).
  13. P. Xie, J. Dai, P. Wang, and H. Zhang, “Self-pumped phase conjugation in photorefractive crystal: reflectivity and spatial fidelity,” Phys. Rev. A 55, 3092 (1997).
  14. A. Shiratori and M. Obara, “Wavelength-stable, narrow-spectral-width oscillation of an AlGaInP diode laser coupled to a BaTiO3:Co stimulated photorefractive backscattering phase conjugator,” Appl. Phys. B 65, 329 (1997).
  15. P. Lambelet, R. P. Salathe, M. H. Garrett, and D. Rytz, “Characterization of a photorefractive phase conjugator by optical low-coherence reflectometry,” Appl. Phys. Lett. 64, 1079 (1994).
  16. K. R. MacDonald and J. Feinberg, “Theory of a self-pumped phase conjugator with two coupled interaction regions,” J. Opt. Soc. Am. 73, 548 (1983).
  17. M. Delpino, T. Rauch, C. Denz, and M. Carrascosa, “Numerical simulation of the time evolution of photorefractive phase conjugate beams: multigrating operations,” Opt. Mater. 4, 326 (1995).
  18. N. Kukhtarev, “Kinetics of hologram recording and erasure in electrooptic crystals,” Sov. Tech. Phys. Lett. 2, 438 (1976).
  19. R. S. Cudney, R. M. Pierce, G. D. Bacher, D. Mahgerefteh, and J. Feinberg, “Intensity dependence of the photogalvanic effect in barium titanate,” J. Opt. Soc. Am. B 9, 1704 (1992).
  20. G. C. Valley and M. B. Klein, “Optimal properties of photorefractive materials for optical data processing,” Opt. Eng. 22, 704 (1983).
  21. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes (Cambridge U. Press, London, 1992).
  22. J. Yamanuchi, J. Shibayama, and H. Nakano, “Wide-angle propagating beam analysis based on the generalized Douglas scheme for variable coefficients,” Opt. Lett. 20, 7 (1995).
  23. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
  24. L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, Oxford, 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited