OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 16, Iss. 2 — Feb. 1, 1999
  • pp: 228–235

Experimental study of the transverse spatial dependence of thermally induced absorptive bistability

F. Pereira, J. R. Salcedo, and M. Belsley  »View Author Affiliations

JOSA B, Vol. 16, Issue 2, pp. 228-235 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (244 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have characterized the transverse spatial dependence of the real and the imaginary parts of the complex nonlinear refractive index of a semiconductor-doped glass filter that exhibits absorptive bistability. Using the Z-scan technique combined with an interferometric measurement of the integrated optical thickness, we are able to fit the observed experimental data, assuming a quadratically varying transverse temperature profile in the sample. The transverse variations in the nonlinear refractive index do not scale directly with the size of the incident beam but exhibit marked asymmetries that depend on whether the incident beam is converging or diverging.

© 1999 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(020.7010) Atomic and molecular physics : Laser trapping
(030.1670) Coherence and statistical optics : Coherent optical effects

F. Pereira, J. R. Salcedo, and M. Belsley, "Experimental study of the transverse spatial dependence of thermally induced absorptive bistability," J. Opt. Soc. Am. B 16, 228-235 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, New York, 1985).
  2. B. S. Wherrett, A. C. Walker, and F. A. P. Tooley, “Nonlinear refraction for cw optical bistability,” in Optical Nonlinearities and Instabilities in Semiconductors, H. Haug, ed. (Academic, San Diego, Calif., 1988), pp. 262–272.
  3. S. W. Koch, “Optical instabilities in semiconductors: theory,” in Optical Nonlinearities and Instabilities in Semiconductors, H. Haug, ed. (Academic, San Diego, Calif., 1988), pp. 273–282.
  4. D. A. B. Miller, “Optical bistability and differential gain resulting from absorption increasing with excitation,” J. Opt. Soc. Am. B 1, 857–864 (1984). [CrossRef]
  5. M. Kretschmar, F. Henneberger, H. Rossmann, and I. Haddad, “Dynamical effects in increasing absorption optical bistability of thermal origin,” Phys. Status Solidi B 143, K71–K76 (1987). [CrossRef]
  6. W. D. St. John, J. P. Wicksted, and G. Cantwell, “Transverse structures in resonatorless absorptive switching in bulk ZnSe,” J. Appl. Phys. 73, 3013–3017 (1993). [CrossRef]
  7. A. K. Kar and B. S. Wherrett, “Thermal dispersive optical bistability and absorptive bistability in bulk ZnSe,” J. Opt. Soc. Am. B 3, 345–350 (1986). [CrossRef]
  8. M. R. Taghizadeh, I. Janossy, and S. D. Smith, “Optical bistability in bulk ZnSe due to increasing absorption and self-focussing,” Appl. Phys. Lett. 46, 331–333 (1985). [CrossRef]
  9. M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity single beam n2 measurements,” Opt. Lett. 14, 955–957 (1989). [CrossRef] [PubMed]
  10. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990). [CrossRef]
  11. J. Hollandt, J. Gutowski, and I. Broser, “A detailed study concerning the main aspects influencing thermally induced optical bistability of CdS,” Phys. Status Solidi B 159, 205–211 (1990). [CrossRef]
  12. M. Lambsdorff, C. Dornfeld, and C. Klingshirn, “Optical bistability in semiconductors induced by thermal effects,” Z. Phys. B 64, 409–416 (1986). [CrossRef]
  13. L. A. Lugiato, “Theory of optical bistability,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1984), Vol. XXI, pp. 115–122.
  14. B. S. Wherret, F. A. P. Tooley, and S. D. Smith, “Absorption switching and bistability in InSb,” Opt. Commun. 52, 301–306 (1984). [CrossRef]
  15. J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965). [CrossRef]
  16. J. W. Fleming, “Optical glasses,” in CRC Handbook of Laser Science and Technology, Optical Materials: Part 2, M. J. Weber, ed. (CRC Press, Boca Raton, Fla., 1987), Vol. IV, pp. 69–83.
  17. A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986).
  18. H. M. Gibbs, G. R. Olbright, N. Peyghambarian, H. E. Schmidt, S. W. Koch, and H. Haug, “Kinks: longitudinal excitation discontinuities in increasing absorption optical bistability,” Phys. Rev. A 32, 692–694 (1985). [CrossRef] [PubMed]
  19. A. E. Siegman, “Quasi-fast Hankel transform,” Opt. Lett. 1, 13–15 (1977). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited