OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 16, Iss. 2 — Feb. 1, 1999
  • pp: 256–261

Unconventional beam amplification with photovoltaic and diffusion effects in a He+-implanted LiNbO3:Fe waveguide

Alexandre Dazzi, Pierre Mathey, Pierre Lompré, Pierre Jullien, Serguey G. Odoulov, and Paul Moretti  »View Author Affiliations

JOSA B, Vol. 16, Issue 2, pp. 256-261 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (221 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two-wave mixing at 514.5 nm is investigated in an x-cut LiNbO3:Fe waveguide twice implanted with helium ions. The energy transfer is studied in four configurations characterized by the orientation of the optical axis and the polarization of the input waves. It is shown that, in one arrangement, the kinetics of the wave mixing consists of two parts: a transient peak attributed to the photovoltaic effect followed by a slower decay toward the stationary state for which the classic diffusion mechanism is predominant. The appearance of the photovoltaic effect is unexpected in comparison with the results found for the bulk.

© 1999 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(130.2790) Integrated optics : Guided waves
(130.3730) Integrated optics : Lithium niobate
(160.5320) Materials : Photorefractive materials
(190.7070) Nonlinear optics : Two-wave mixing

Alexandre Dazzi, Pierre Mathey, Pierre Lompré, Pierre Jullien, Serguey G. Odoulov, and Paul Moretti, "Unconventional beam amplification with photovoltaic and diffusion effects in a He+-implanted LiNbO3:Fe waveguide," J. Opt. Soc. Am. B 16, 256-261 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Sohler and H. Suche, “Second-harmonic generation in Ti-diffused LiNbO3 optical waveguides with 25% conversion efficiency,” Appl. Phys. Lett. 33, 518–520 (1978). [CrossRef]
  2. J. Amin, V. Pruneri, J. Webjörn, P. St. J. Russell, D. C. Hanna, and J. S. Wilkinson, “Blue light generation in a periodically poled Ti:LiNbO3 channel waveguide,” Opt. Commun. 135, 41–44 (1997). [CrossRef]
  3. T. Pliska, F. Mayer, D. Fluck, P. Günter, and D. Rytz, “Nonlinear optical investigation of the optical homogeneity of KNbO3 bulk crystals and ion-implanted waveguides,” J. Opt. Soc. Am. B 12, 1878–1887 (1995). [CrossRef]
  4. K. E. Youden, S. W. James, R. W. Eason, P. J. Chandler, L. Zhang, and P. D. Townsend, “Photorefractive planar waveguides in BaTiO3 fabricated by ion-beam implantation,” Opt. Lett. 17, 1509–1511 (1992). [CrossRef]
  5. O. V. Kandidova, V. V. Lemanov, and B. V. Sukharev, “Hologram storage in planar lithium niobate waveguides,” Sov. Tech. Phys. Lett. 9, 335–336 (1982).
  6. O. V. Kandidova, V. V. Lemanov, and B. V. Sukharev, “Self-diffraction of light in lithium niobate waveguides,” Sov. Phys. Tech. Phys. 29, 1019–1022 (1984).
  7. D. Kip, F. Rickermann, and E. Krätzig, “Photorefractive recording by a special mechanism in planar LiNbO3 waveguides,” Opt. Lett. 20, 1139–1141 (1995). [CrossRef] [PubMed]
  8. D. Kip, B. Kemper, I. Nee, R. Pankrath, and P. Moretti, “Photorefractive properties of ion-implanted waveguides in strontium barium niobate crystals,” Appl. Phys. B 65, 511–516 (1997). [CrossRef]
  9. S. M. Kostritskii, D. Kip, and E. Krätzig, “Improvement of photorefractive properties of proton-exchanged LiTaO3 waveguides,” Appl. Phys. B 65, 517–522 (1997). [CrossRef]
  10. A. Dazzi, P. Mathey, and P. Jullien, “Energy leaks through the optical barrier created by H+ implantation in BaTiO3 and LiNbO3 waveguides,” Opt. Commun. 149, 135–142 (1998). [CrossRef]
  11. P. Mathey, P. Jullien, and J. L. Bolzinger, “Refractive-index profile reconstructions in planar waveguides by the WKB inverse method and reflectivity calculations,” J. Opt. Soc. Am. B 12, 1663–1670 (1995). [CrossRef]
  12. D. Marcuse, “Modes of a symmetric slab optical waveguide in birefringent media. II. Slab with coplanar optical axis,” IEEE J. Quantum Electron. QE-15, 92–101 (1979). [CrossRef]
  13. M. Lu and M. M. Fejer, “Anisotropic dielectric waveguides,” J. Opt. Soc. Am. B 10, 246–261 (1993). [CrossRef]
  14. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966). [CrossRef]
  15. Q. W. Song, C. Zhang, and P. J. Talbot, “Self-defocusing, self-focusing, and speckle in LiNbO3 and LiNbO3:Fe crystals,” Appl. Opt. 32, 7266–7271 (1993). [CrossRef] [PubMed]
  16. A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974). [CrossRef]
  17. S. G. Odoulov, “Spatially oscillating photovoltaic current in iron-doped lithium niobate crystals,” JETP Lett. 35, 10–13 (1982).
  18. B. I. Sturman, “The photogalvanic effect—a mechanism of non linear wave interaction in electrooptic crystals,” Sov. J. Quantum Electron. 10, 276–278 (1980). [CrossRef]
  19. S. G. Odoulov and B. I. Sturman, “Four-wave polarization interaction in photorefractive crystals,” Sov. Phys. JETP 65, 1134–1144 (1987).
  20. P. Günter and J.-P. Huignard, Photorefractive Materials and Their Applications (Springer-Verlag, Heidelberg, 1988, 1989), Vols. I and II.
  21. E. Krätzig and R. Sommerfeld, “Influence of dopants on photorefractive properties of LiNbO3 crystals,” in Nonlinear Optical Materials III, P. Günter, ed., Proc. SPIE 1273, 58–60 (1990).
  22. F. Jermann and J. Otten, “Light-induced charge transport in LiNbO3:Fe at high light intensities,” J. Opt. Soc. Am. B 10, 2085–2092 (1993). [CrossRef]
  23. O. V. Kandidova, V. V. Lemanov, and B. V. Sukharev, “Hologram writing in lithium niobate planar lightguides,” Sov. Phys. Tech. Phys. 9, 335–336 (1983).
  24. K. Shvarts, A. Ozols, P. Augustov, and M. Reinfelde, “Photorefraction and self enhancement of holograms in LiNbO3 and LiTaO3 crystals,” Ferroelectrics 75, 231–249 (1987). [CrossRef]
  25. N. Kukhtarev, V. Markov, and S. Odoulov, “Transient energy transfer during hologram formation in LiNbO3 in external electric field,” Opt. Commun. 23, 338–343 (1977). [CrossRef]
  26. M. Carrascosa, J. M. Cabrera, and F. Agullo-Lopez, “Role of the photovoltaic drift on the initial writing and erasure rates of holographic gratings: some implications,” Opt. Commun. 69, 83–86 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited