OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 16, Iss. 2 — Feb. 1, 1999
  • pp: 286–295

Low-intensity-noise operation of Nd:YVO4 microchip lasers by pump-noise suppression

Christoph Becher and Klaus-J. Boller  »View Author Affiliations

JOSA B, Vol. 16, Issue 2, pp. 286-295 (1999)

View Full Text Article

Acrobat PDF (271 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on near-quantum-limited intensity noise of Nd:YVO<sub>4</sub> microchip lasers pumped with pump-noise-suppressed diode lasers. The low-frequency intensity noise of the microchip lasers is found to depend on mode correlation effects in the absorbed radiation from the diode laser pump source. A minimum intensity noise of 0.5 dB above the standard quantum-noise limit at a frequency of 250 kHz is obtained by pumping with a grating-feedback diode laser. An accurate description of the measured intensity-noise spectra by a quantum-mechanical Langevin rate-equation model is achieved by consideration of the nonlinear gain saturation that is due to the finite lifetime of the lower laser level.

© 1999 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3580) Lasers and laser optics : Lasers, solid-state
(270.0270) Quantum optics : Quantum optics
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(270.6570) Quantum optics : Squeezed states

Christoph Becher and Klaus-J. Boller, "Low-intensity-noise operation of Nd:YVO4 microchip lasers by pump-noise suppression," J. Opt. Soc. Am. B 16, 286-295 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. Y. Yamamoto, S. Machida, N. Imoto, M. Kitagawa, and G. Björk, “Generation of number-phase minimum-uncertainty states and number states,” J. Opt. Soc. Am. B 4, 1645 (1987).
  2. C. C. Harb, T. C. Ralph, E. H. Huntington, D. E. McClelland, and H.-A. Bachor, “Intensity-noise dependence of Nd:YAG lasers on their diode-laser pump source,” J. Opt. Soc. Am. B 14, 2936 (1997).
  3. T. C. Ralph, C. C. Harb, and H.-A. Bachor, “Intensity-noise of injection-locked lasers: quantum theory using a linearized input–output method,” Phys. Rev. A 54, 4359 (1996).
  4. C. Becher and K.-J. Boller, “Intensity noise properties of Nd:YVO4 microchip lasers pumped with an amplitude squeezed diode laser,” Opt. Commun. 147, 366 (1998).
  5. Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise-suppressed laser oscillator,” Phys. Rev. A 34, 4025 (1986).
  6. T. J. Kane, “Intensity noise in a diode-pumped single frequency Nd:YAG laser and its control by electronic feedback,” IEEE Photonics Technol. Lett. 2, 244 (1990).
  7. C. C. Harb, M. B. Gray, H.-A. Bachor, R. Schilling, P. Rottengatter, I. Freitag, and H. Welling, “Suppression of the intensity noise in a diode-pumped-neodymium:YAG nonplanar ring laser,” IEEE J. Quantum Electron. 30, 2907 (1994).
  8. A. D. Farinas, E. K. Gustavson, and R. L. Byer, “Frequency and intensity noise in an injection-locked, solid-state laser,” J. Opt. Soc. Am. B 12, 328 (1995).
  9. C. C. Harb, T. C. Ralph, E. H. Huntington, I. Freitag, D. E. McClelland, and H.-A. Bachor, “Intensity-noise properties of injection-locked lasers,” Phys. Rev. A 54, 4370 (1996).
  10. E. H. Huntington, B. C. Buchler, C. C. Harb, T. C. Ralph, D. E. McClelland, and H.-A. Bachor, “Feedback control of the intensity noise of injection locked lasers,” Opt. Commun. 145, 359 (1998).
  11. S. Machida and Y. Yamamoto, “Observation of sub-poissonian photoelectron statistics in a negative feedback semiconductor laser,” Opt. Commun. 57, 290 (1986).
  12. J. Bartschke, R. Knappe, C. Becher, B. Beier, M. Scheidt, K.-J. Boller, and R. Wallenstein, “Efficient visible Nd:YAB and monolithic Nd:YAG lasers pumped by the diffraction limited output of an injection-locked high power diode laser array,” in Advanced Solid State Lasers, Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), p. 340.
  13. F. Marin, A. Bramati, E. Giacobino, T.-C. Zhang, J.-Ph. Poizat, J.-F. Roch, and P. Grangier, “Squeezing and intermode correlations in laser diodes,” Phys. Rev. Lett. 75, 4606 (1995).
  14. C. Becher, E. Gehrig, and K.-J. Boller, “Spectrally asymmetric mode correlation and intensity noise in pump-noise-suppressed laser diodes,” Phys. Rev. A 57, 3952 (1998).
  15. H. P. Yuen and V. W. S. Chan, “Noise in homodyne and heterodyne detection,” Opt. Lett. 8, 177 (1983).
  16. S. Machida and Y. Yamamoto, “Quantum-limited operation of balanced mixer homodyne and heterodyne receivers,” IEEE J. Quantum Electron. QE-22, 617 (1986).
  17. L. Fornasiero, S. Kück, T. Jensen, G. Huber, and W. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. II. YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B. 67, 549 (1998).
  18. Y. Guyot, H. Maana, J. Y. Rivoire, and R. Moncorgé, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B 51, 784 (1995).
  19. D. J. Channin, “Effect of gain saturation on injection laser switching,” J. Appl. Phys. 50, 3858 (1979).
  20. O. Nilsson, A. Karlsson, and E. Berglind, “Modulation and noise spectra of complicated laser structures,” in Coherence, Amplification and Quantum Effects in Semiconductor Lasers, Y. Yamamoto, ed. (Wiley, New York, 1991), pp. 77–95.
  21. R. Polloni and O. Svelto, “Static and dynamic behavior of a single-mode Nd-YAG laser,” IEEE J. Quantum Electron. 4, 481 (1968).
  22. R. Böhm, V. M. Baev, and P. E. Toschek, “Measurements of operation parameters and nonlinearity of a Nd3+-doped fibre laser by relaxation oscillations,” Opt. Commun. 134, 537 (1997).
  23. J. L. Vey and P. Gallion, “Amplitude squeezing with a Fabry–Perot semiconductor laser: existence of an optimum biasing condition,” Opt. Lett. 20, 2018 (1995).
  24. H. G. Danielmeyer, “Effects of drift and diffusion of excited states on spatial hole burning and laser oscillation,” J. Appl. Phys. 42, 3125 (1971).
  25. J. J. Zayhowski, “The effects of spatial hole burning and energy diffusion on the single-mode operation of standing-wave lasers,” IEEE J. Quantum Electron. 26, 2052 (1990).
  26. S. Helmfried and K. Tatsuno, “Stable single-mode operation of intracavity-doubled diode-pumped Nd:YVO4 lasers: theoretical study,” J. Opt. Soc. Am. B 11, 436 (1994).
  27. D. Sardar and R. C. Powell, “Energy transfer processes in YVO4:Nd3+,” J. Appl. Phys. 51, 2829 (1980).
  28. J. Cruz, G. Giuliani, and H. M. van Driel, “Measurement of the subnanosecond, nonradiative relaxation time from excited states of Nd3+in a Nd:YAG crystal,” Opt. Lett. 15, 282 (1990).
  29. C. Bibeau, S. A. Payne, and H. T. Powell, “Direct measurement of the terminal laser level lifetime in neodymium-doped crystals and glasses,” J. Opt. Soc. Am. B 12, 1981 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited