OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 16, Iss. 3 — Mar. 1, 1999
  • pp: 376–388

Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers

G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller  »View Author Affiliations


JOSA B, Vol. 16, Issue 3, pp. 376-388 (1999)
http://dx.doi.org/10.1364/JOSAB.16.000376


View Full Text Article

Acrobat PDF (609 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a model for passively Q-switched microchip lasers and derive simple equations for the pulse width, repetition rate, and pulse energy. We experimentally verified the validity of the model by systematically varying the relevant device parameters. We used the model to derive practical design guidelines for realizing operation parameters that can be varied in large ranges by adoption of the parameters of the semiconductor saturable-absorber mirror and choice of the appropriate gain medium. Applying these design guidelines, we obtained 37-ps pulses, which to our knowledge are the shortest pulses ever generated in a passively Q-switched solid-state laser.

© 1999 Optical Society of America

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3500) Lasers and laser optics : Lasers, erbium
(140.3530) Lasers and laser optics : Lasers, neodymium
(140.3540) Lasers and laser optics : Lasers, Q-switched
(140.3580) Lasers and laser optics : Lasers, solid-state
(160.6000) Materials : Semiconductor materials

Citation
G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, "Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers," J. Opt. Soc. Am. B 16, 376-388 (1999)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-16-3-376


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. J. Zayhowski and A. Mooradian, “Single-frequency microchip Nd lasers,” Opt. Lett. 14, 24–26 (1989).
  2. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
  3. U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry–Perot saturable absorber,” Opt. Lett. 17, 505–507 (1992).
  4. U. Keller, “Semiconductor nonlinearities for solid-state laser modelocking and Q-switching,” in Nonlinear Optics in Semiconductors, A. Kost and E. Garmire, eds. (Academic, Boston, Mass., 1998), Vol. 59, Chap. 4, pp. 211–285.
  5. Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31, 1728–1741 (1995).
  6. J. J. Zayhowski and C. Dill III, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19, 1427–1429 (1994).
  7. B. Braun, F. X. Kärtner, M. Moser, G. Zhang, and U. Keller, “56-ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22, 381–383 (1997).
  8. R. Fluck, B. Braun, E. Gini, H. Melchior, and U. Keller, “Passively Q-switched 1.34-μm Nd:YVO4 microchip laser using semiconductor saturable-absorber mirrors,” Opt. Lett. 22, 991–993 (1997).
  9. R. Fluck, R. Häring, R. Paschotta, E. Gini, H. Melchior, and U. Keller, “Eyesafe pulsed microchip laser using semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 72, 3273–3275 (1998).
  10. R. W. Hellwarth, ed., Advances in Quantum Electronics (Columbia U. Press, New York, 1961).
  11. F. J. McClung and R. W. Hellwarth, “Giant optical pulsations from ruby,” J. Appl. Phys. 33, 828–829 (1962).
  12. R. J. Collins and P. Kisliuk, “Control of population inversion in pulsed optical masers by feedback modulation,” J. Appl. Phys. 33, 2009–2011 (1962).
  13. A. A. Vuylsteke, “Theory of laser regeneration switching,” J. Appl. Phys. 34, 1615–1622 (1963).
  14. W. G. Wagner and B. A. Lengyel, “Evolution of the giant pulse in a laser,” J. Appl. Phys. 34, 2040–2046 (1963).
  15. L. E. Erickson and A. Szabo, “Effects of saturable absorber lifetime on the performance of giant-pulse lasers,” J. Appl. Phys. 37, 4953–4961 (1966).
  16. L. E. Erickson and A. Szabo, “Behavior of saturable-absorber giant-pulse lasers in the limit of large absorber cross section,” J. Appl. Phys. 38, 2540–2542 (1967).
  17. J. J. Zayhowski, “Q-switched operation of a microchip laser,” Opt. Lett. 16, 575–577 (1991).
  18. J. J. Zayhowski and P. L. Kelley, “Optimization of Q-switched Lasers,” IEEE J. Quantum Electron. 27, 2220–2225 (1991).
  19. J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890–1901 (1995).
  20. J. J. Zayhowski, “Limits imposed by spatial hole burning on the single-mode operation of standing-wave laser cavities,” Opt. Lett. 15, 431–433 (1990).
  21. B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole-burning. I. Experiments,” Appl. Phys. B: Lasers Opt. 61, 429–437 (1995).
  22. J. J. Zayhowski, “Ultraviolet generation with passively Q-switched microchip lasers,” Opt. Lett. 21, 588–590 (1996).
  23. J. J. Zayhowski, “Thermal guiding in microchip lasers,” in Advanced Solid-State Lasers, H. P. Jenssen and G. Dube, eds., Vol. 6 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1990), pp. 9–14.
  24. S. Longhi, “Theory of transverse modes in end-pumped microchip lasers,” J. Opt. Soc. Am. B 11, 1098–1107 (1994).
  25. L. R. Brovelli, U. Keller, and T. H. Chiu, “Design and operation of antiresonant Fabry–Perot saturable semiconductor absorbers for mode-locked solid-state lasers,” J. Opt. Soc. Am. B 12, 311–322 (1995).
  26. G. L. Witt, R. Calawa, U. Mishra, and E. Weber, eds., Low Temperature (LT) GaAs and Related Materials (Materials Research Society, Pittsburgh, Pa., 1992), Vol. 241.
  27. Kigre, Inc., QX laser glasses data sheet (Kigre, Hilton Head Island, South Carolina, 1996).
  28. B. Beier, J.-P. Meyn, R. Knappe, K.-J. Boller, G. Huber, and R. Wallenstein, “A 180-mW Nd:LaSc3(BO3)4 single-frequency TEM00 microchip laser pumped by an injection-locked diode-laser array,” Appl. Phys. B 58, 381–388 (1994).
  29. J.-P. Meyn, T. Jensen, and G. Huber, “Spectroscopic properties and efficient diode-pumped laser operation of neodymium doped lanthanum scandium borate,” IEEE J. Quantum Electron. 30, 913–917 (1994).
  30. J.-P. Meyn, “Neodym-Lanthan-Scandium-Borat: Ein neues Material für miniaturisierte Festkörperlaser,” Ph.D. dissertation (Universität Hamburg, Hamburg, Germany, 1994).
  31. Casix, crystals and materials catalog (Casix, Inc., Fuzhou, Fujian, China).
  32. P. Laporta, Politecnico de Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy (personal communication, 1997).
  33. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin, 1992).
  34. B. Braun, F. X. Kärtner, U. Keller, J.-P. Meyn, and G. Huber, “Passively Q-switched 180-ps Nd:LSB microchip laser,” Opt. Lett. 21, 405–407 (1996).
  35. E. Snitzer and R. Woodcock, “Yb3+–Er3+ glass laser,” Appl. Phys. Lett. 6, 45–46 (1965).
  36. H. A. Haus, “Parameter ranges for cw passive modelocking,” IEEE J. Quantum Electron. 12, 169–176 (1976).
  37. F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. (Bellingham) 34, 2024–2036 (1995).
  38. T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, “Single-mode oscillation of laser-diode-pumped Nd:YVO4 microchip lasers,” Opt. Lett. 16, 1955–1957 (1991).
  39. A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986).
  40. J. R. Bettis, R. A. House II, and A. H. Guenther, “Spot size and pulse duration dependence of laser-induced damage,” in Laser Induced Damage in Optical Materials, NBS Spec. Publ. 462, 338–345 (1976).
  41. L. O. Chua, Computer Aided Analysis of Electronic Circuits: Algorithms and Computational Techniques (Prentice-Hall, Englewood Cliffs, N.J., 1975).
  42. A. Szabo and R. A. Stein, “Theory of laser giant pulsing by a saturable absorber,” J. Appl. Phys. 36, 1562–1566 (1965).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited