OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 16, Iss. 3 — Mar. 1, 1999
  • pp: 441–447

Optimization of soliton amplitude in dispersion-decreasing nonlinear optical fibers

Ken I. M. McKinnon, Noel F. Smyth, and Annette L. Worthy  »View Author Affiliations

JOSA B, Vol. 16, Issue 3, pp. 441-447 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (240 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The compression of a cw into a periodic train of noninteracting solitons by a dispersion-decreasing fiber is investigated with a variational method. To model the evolution from the cw to the soliton train, an elliptic-function-based expression is used as the trial function in the averaged Lagrangian. Both a continuous dispersion variation and a step dispersion variation in the fiber are considered. By use of an optimization method based on the approximate variational equations, the optimal dispersion profile required for achieving maximum pulse compression in a fixed length of fiber is determined. The solutions of the approximate equations are compared with full numerical solutions of the governing nonlinear Schrödinger equation, and good agreement is found.

© 1999 Optical Society of America

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

Ken I. M. McKinnon, Noel F. Smyth, and Annette L. Worthy, "Optimization of soliton amplitude in dispersion-decreasing nonlinear optical fibers," J. Opt. Soc. Am. B 16, 441-447 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. V. Chernikov, E. M. Dianov, D. J. Richardson, and D. N. Payne, “Soliton pulse compression in dispersion-decreasing fiber,” Opt. Lett. 18, 476–478 (1993). [CrossRef] [PubMed]
  2. S. V. Chernikov, J. R. Taylor, and R. Kashyap, “Integrated all optical fiber source and multigigahertz soliton pulse train,” Electron. Lett. 29, 1788–1789 (1993). [CrossRef]
  3. P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, “Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines,” IEEE J. Quantum Electron. QE-27, 2347–2355 (1991). [CrossRef]
  4. E. A. Swanson and S. R. Chinn, “40-GHz pulse train generation using soliton compression of a Mach–Zehnder modulator output,” IEEE Photonics Technol. Lett. 7, 114–116 (1995). [CrossRef]
  5. V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh, and S. I. Miroshnichenko, “A single-mode fiber with chromatic dispersion varying along the length,” J. Lightwave Technol. 9, 561–566 (1991). [CrossRef]
  6. D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, “Experimental demonstration of 100 GHz dark soliton generation and propagation using a dispersion decreasing fiber,” Electron. Lett. 30, 1326–1327 (1994). [CrossRef]
  7. G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989).
  8. A. Hasegawa, Optical Solitons in Fibers, 2nd ed. (Springer-Verlag, Berlin, 1990).
  9. P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists (Springer-Verlag, Berlin, 1954).
  10. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972).
  11. W. L. Kath and N. F. Smyth, “Soliton evolution and radiation loss for the nonlinear Schrödinger equation,” Phys. Rev. E 51, 1484–1492 (1995). [CrossRef]
  12. A. C. Newell, Solitons in Mathematics and Physics (Society for Industrial and Applied Mathematics, Philadelphia, Penn., 1985).
  13. J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. (UK) 7, 308–313 (1965). [CrossRef]
  14. W. H. Press, S. A. Tuekolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran: The Art of Scientific Computing (Cambridge University, Cambridge, UK, 1992).
  15. J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence behavior of the Nelder–Mead simplex algorithm in low dimensions,” SIAM J. Opt. (Soc. Ind. Appl. Math) 9, 112–147 (1998).
  16. K. I. McKinnon, “Convergence of the Nelder–Mead simplex method to a non-stationary point,” SIAM J. Opt. (Soc. Ind. Appl. Math) 9, 148–158 (1998).
  17. B. Fornberg and G. B. Whitham, “A numerical and theoretical study of certain nonlinear wave phenomena,” Philos. Trans. R. Soc. London, Ser. A 289, 373–403 (1978). [CrossRef]
  18. R. Haberman, “The modulated phase shift for weakly dissipated nonlinear oscillatory waves of the Korteweg–de Vries type,” Stud. Appl. Math. 78, 73–90 (1988).
  19. R. Haberman, “Phase shift modulations for stable, oscillatory, travelling, strongly nonlinear waves,” Stud. Appl. Math. 84, 57–69 (1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited