OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 16, Iss. 3 — Mar. 1, 1999
  • pp: 448–459

Singly resonant cavity-enhanced frequency tripling

Karl Koch and Gerald T. Moore  »View Author Affiliations


JOSA B, Vol. 16, Issue 3, pp. 448-459 (1999)
http://dx.doi.org/10.1364/JOSAB.16.000448


View Full Text Article

Acrobat PDF (344 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We use a plane-wave analysis to examine a singly resonant, cavity-enhanced, frequency doubler containing an intracavity sum-frequency interaction that frequency sums the resonant fundamental with the second harmonic to produce the third harmonic of the resonant field. We derive expressions for the steady-state performance of the device. We determine the input coupler intensity reflectivity and the ratio of nonlinear drives between the second-harmonic generation (SHG) and sum-frequency generation (SFG) stages for optimum third-harmonic conversion efficiency. We also examine the optimum SHG interaction length under conditions of limited total interaction length. We find that numerical simulations modeling three spatial dimensions can be closely approximated by appropriately scaled plane-wave results. As an example, we consider frequency tripling of a 350-mW, 1319-nm, cw laser in two consecutive nonlinear gratings in periodically poled lithium niobate and find third-harmonic power-conversion efficiency of 85.3% when first-order quasi-phase-matching (QPM) is used for the SFG process and 51.0% when third-order SFG QPM is used. We also consider frequency tripling of a 20-W, 1064-nm, continuous-wave mode-locked laser in two lithium triborate crystals and find a time-averaged third-harmonic power-conversion efficiency of 56.0% from modeling three spatial dimensions.

© 1999 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.7220) Nonlinear optics : Upconversion

Citation
Karl Koch and Gerald T. Moore, "Singly resonant cavity-enhanced frequency tripling," J. Opt. Soc. Am. B 16, 448-459 (1999)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-16-3-448


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Ashkin, G. D. Boyd, and J. M. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. QE-2, 109–123 (1966).
  2. W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Second-harmonic generation of a continuous-wave diode-pumped Nd:YAG laser using an externally resonant cavity,” Opt. Lett. 12, 1014–1016 (1987).
  3. W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient 2nd harmonic-generation of a diode-laser-pumped cw Nd-YAG laser using monolithic MgO-LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. QE-24, 913–919 (1988).
  4. G. T. Maker and A. I. Ferguson, “Efficient frequency doubling of a diode-laser-pumped Nd:YAG laser using an external resonant cavity,” Opt. Commun. 76, 369–375 (1990).
  5. D. H. Jundt, G. A. Magel, M. M. Fejer, and R. L. Byer, “Periodically poled LiNbO3 for high-efficiency second-harmonic generation,” Appl. Phys. Lett. 59, 2657–2659 (1991).
  6. E. S. Polzik and H. J. Kimble, “Frequency doubling with KNbO3 in an external cavity,” Opt. Lett. 16, 1400–1402 (1991).
  7. Z. Y. Ou and H. J. Kimble, “Enhanced conversion efficiency for harmonic generation with double resonance,” Opt. Lett. 18, 1053–1055 (1993).
  8. K. Fiedler, S. Schiller, R. Paschotta, P. Kürz, and J. Mlynek, “Highly efficient frequency doubling with a doubly resonant monolithic total-internal-reflection ring resonator,” Opt. Lett. 18, 1786–1788 (1993).
  9. M. Watanabe, K. Hayasaka, H. Imajo, and S. Urabe, “Continuous-wave sum-frequency generation near 194 nm with a collinear double enhancement cavity,” Opt. Commun. 97, 225–227 (1993).
  10. J. Knittel and A. H. Kung, “39.5% conversion of low-power Q-switched Nd:YAG laser radiation of 266 nm by use of a resonant ring cavity,” Opt. Lett. 22, 366–368 (1997).
  11. J. Knittel and A. H. Kung, “Fourth harmonic generation in a resonant ring cavity,” IEEE J. Quantum Electron. QE-33, 2021–2028 (1997).
  12. Notation and properties of elliptic integrals and Jacobi elliptic functions taken from M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965), Chaps. 16–17, pp. 576–626.
  13. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
  14. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
  15. G. T. Moore and K. Koch, “Efficient frequency conversion at low power using periodic refocusing,” J. Opt. Soc. Am. B (to be published).
  16. G. T. Moore, K. Koch, and E. C. Cheung, “Optical parametric oscillation with intracavity second-harmonic generation,” Opt. Commun. 113, 463–470 (1995).
  17. G. T. Moore and K. Koch, “The tandem optical parametric oscillator,” IEEE J. Quantum Electron. QE-32, 2085–2094 (1996).
  18. G. T. Moore and K. Koch, “Optical parametric oscillation with detuned intracavity sum-frequency generation,” IEEE J. Quantum Electron. QE-29, 2334–2341 (1993).
  19. K. Koch, G. T. Moore, and M. E. Dearborn, “Raman oscillation with intracavity second-harmonic generation,” IEEE J. Quantum Electron. QE-33, 1743–1748 (1997).
  20. G. T. Moore, K. Koch, and E. C. Cheung, “Theory of multi-stage intracavity frequency conversion in optical parametric oscillators,” in Solid State Lasers and Nonlinear Crystals, G. J. Quarles, L. Esterowitz, and L. K. Cheng, eds., Proc. SPIE 2379, 84–94 (1995).
  21. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem. 31, 97–105 (1983).
  22. D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
  23. R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17–19 (1964).
  24. R. Asby, “Optical-mode interaction in nonlinear media,” Phys. Rev. 187, 1062–1069 (1969).
  25. R. Asby, “Theory of optical parametric amplification from a focused Gaussian beam,” Phys. Rev. B 2, 4273–4282 (1970).
  26. K. Drühl, “Dispersion-induced generation of higher order transversal modes in singly-resonant optical parametric oscillators,” Opt. Commun. 145, 5–8 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited