OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 16, Iss. 4 — Apr. 1, 1999
  • pp: 513–518

Polarization stability of solitons in birefringent optical fibers

D. C. Hutchings and J. M. Arnold  »View Author Affiliations


JOSA B, Vol. 16, Issue 4, pp. 513-518 (1999)
http://dx.doi.org/10.1364/JOSAB.16.000513


View Full Text Article

Enhanced HTML    Acrobat PDF (204 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The propagation of solitons in low-birefringent optical fiber is considered when four-wave-mixing leads to energy exchange between polarization components. The stability of stationary solutions is addressed with a linear stability analysis expressed as an eigenvalue equation. It is shown that in the vicinity of the bifurcation point the eigenvalues must be either pure real (stable) or pure imaginary (unstable). The transition between these (zero eigenvalue) lends itself to analytical solutions, in spite of the nonintegrability of the original system of partial differential equations. It is demonstrated that the marginally stable perturbations of phase shift and temporal shift also apply to mixed-mode stationary solutions. The bifurcation point is found exactly along with the corresponding eigenfunction. This analysis provides the elliptically polarized stationary solution just above the bifurcation point. It is also shown that the fast-mode soliton just below the bifurcation point and the elliptically polarized soliton just above the bifurcation point are stable.

© 1999 Optical Society of America

OCIS Codes
(060.2420) Fiber optics and optical communications : Fibers, polarization-maintaining
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

Citation
D. C. Hutchings and J. M. Arnold, "Polarization stability of solitons in birefringent optical fibers," J. Opt. Soc. Am. B 16, 513-518 (1999)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-16-4-513


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. R. Menyuk, IEEE J. Quantum Electron. 25, 2674 (1989). [CrossRef]
  2. S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, J. Lightwave Technol. 10, 28 (1992). [CrossRef]
  3. N. N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear pulses and beams (Chapman & Hall, London 1997).
  4. D. C. Hutchings, J. S. Aitchison, and J. M. Arnold, J. Opt. Soc. Am. B 14, 869 (1997). [CrossRef]
  5. D. C. Hutchings, J. M. Arnold, and D. F. Parker, Phys. Rev. E 58, 6649 (1998). [CrossRef]
  6. S. V. Manakov, Sov. Phys. JETP 38, 248 (1974).
  7. G. Gregori and S. Wabnitz, Phys. Rev. Lett. 56, 600 (1986). [CrossRef] [PubMed]
  8. D. C. Hutchings, J. M. Arnold, and J. S. Aitchison, Opt. Quantum Electron. 30, 771 (1998). [CrossRef]
  9. K. J. Blow, N. J. Doran, and D. Wood, Opt. Lett. 12, 202 (1987). [CrossRef] [PubMed]
  10. N. Akhmediev and J. M. Soto-Crespo, Phys. Rev. E 49, 5742(1994); N. Akhmediev, A. Buryak, and J. M. Soto-Crespo, Opt. Commun. 112, 278 (1994). [CrossRef]
  11. Y. Barad and Y. Silberberg, Phys. Rev. Lett. 78, 3290 (1997). [CrossRef]
  12. N. N. Akhmediev, A. V. Buryak, J. M. Soto-Crespo, and D. R. Andersen, J. Opt. Soc. Am. B 12, 434 (1995). [CrossRef]
  13. Y. Chen and J. Atai, Phys. Rev. E 52, 3102 (1995). [CrossRef]
  14. D. N. Christodoulides and R. I. Joseph, Opt. Lett. 13, 53 (1988). [CrossRef] [PubMed]
  15. Y. Chen, Phys. Rev. E 57, 3542 (1998). [CrossRef]
  16. G. Rowlands, J. Inst. Math. Appl. 13, 367 (1974). [CrossRef]
  17. T. Kapitula and B. Sandstede, Physica D 124, 58 (1998). [CrossRef]
  18. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (Dover, London 1965).
  19. J. W. Evans, Indiana Univ. Math. J. 21, 877 (1972); 22, 75 (1972); 24, 1169 (1975). [CrossRef]
  20. M. J. Ablowitz and B. M. Herbst, SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 50, 339 (1990). [CrossRef]
  21. B. M. Herbst and M. J. Ablowitz, Phys. Rev. Lett. 62, 2065 (1989). [CrossRef] [PubMed]
  22. H. T. Tran, J. D. Mitchell, N. N. Akhmediev, and A. Ankiewicz, Opt. Commun. 93, 227 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited