OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 16, Iss. 4 — Apr. 1, 1999
  • pp: 523–532

Dynamic response of a Fabry–Perot interferometer

M. J. Lawrence, B. Willke, M. E. Husman, E. K. Gustafson, and R. L. Byer  »View Author Affiliations

JOSA B, Vol. 16, Issue 4, pp. 523-532 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (297 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We predict and measure the temporal response of a Fabry–Perot cavity field to changes in cavity length and frequency of the incident laser field. We outline the theoretical differences between changes in the cavity-length and laser-frequency modulation and present a theoretical derivation of the time response of the resulting cavity field and its effect on the reflected field, the transmitted field, and the Pound–Drever–Hall error signal. We show that oscillations in the resulting signals are due to oscillations in the amplitude and the phase of the cavity field itself. Finally, we demonstrate how induced cavity-field oscillations may be used to determine the mirror velocity or the frequency change of the injected laser field.

© 1999 Optical Society of America

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(140.4780) Lasers and laser optics : Optical resonators

M. J. Lawrence, B. Willke, M. E. Husman, E. K. Gustafson, and R. L. Byer, "Dynamic response of a Fabry–Perot interferometer," J. Opt. Soc. Am. B 16, 523-532 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Fabry and A. Perot, “Théorie et applications d’une nouvelle méthode de Spectroscopie Interférentielle,” Ann. de Chim. et de Phys. 16, 115 (1899).
  2. J. M. Vaughan, The Fabry-Perot Interferometer: History, Theory, Practice, and Applications (Hilger, London, 1989).
  3. H. J. Schmitt and H. Zimmer, “Fast sweep measurements of relaxation times in superconducting cavities,” IEEE Trans. Microwave Theory Tech. MTT-14, 206–207 (1966). [CrossRef]
  4. K. An, C. Yang, R. R. Dasari, and M. S. Feld, “Cavity ring-down technique and its application to the measurement of ultraslow velocities,” Opt. Lett. 20, 1068–1070 (1995). [CrossRef] [PubMed]
  5. A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992). [CrossRef] [PubMed]
  6. B. A. Paldus, C. C. Harb, T. G. Spence, B. Willke, J. Xie, J. S. Harris, and R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3993 (1998). [CrossRef]
  7. J. Camp, L. Sievers, R. Bork, and J. Hefner, “Guided lock acquisition in a suspended Fabry–Perot cavity,” Opt. Lett. 20, 2463–2465 (1995). [CrossRef]
  8. K. Kawabe, N. Mio, and K. Tsubono, “Automatic alignment-control system for a suspended Fabry–Perot cavity,” Appl. Opt. 33, 5498–5505 (1994). [CrossRef] [PubMed]
  9. E. Morrison, B. J. Meers, D. I. Robertson, and H. Ward, “Automatic alignment of optical interferometers,” Appl. Opt. 33, 5041–5049 (1994). [CrossRef] [PubMed]
  10. E. Morrison, B. J. Meers, D. I. Robertson, and H. Ward, “Experimental demonstration of an automatic alignment system for optical interferometers,” Appl. Opt. 33, 5037–5040 (1994). [CrossRef] [PubMed]
  11. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem. 31, 97–105 (1983). [CrossRef]
  12. E. Hecht, Optics (Addison-Wesley, Reading, Mass., 1987), p. 368. We extend the term “Fabry–Perot” to include cavities with curved as well as flat mirrors in this paper.
  13. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 413–426.
  14. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1980), pp. 327–328.
  15. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 437.
  16. A. Yariv, Optical Electronics (Holt, Rinehart & Winston, New York, N.Y., 1985), pp. 294–296.
  17. N. Uehara and K. Ueda, “Frequency stabilization of two diode-pumped Nd:YAG lasers locked to two Fabry–Perot cavities,” Jpn. J. Appl. Phys. 33, 1628–1633 (1994). [CrossRef]
  18. T. Day, E. K. Gustafson, and R. L. Byer, “Active frequency stabilization of a 1.062-μm, Nd:GGG, diode-laser-pumped nonplanar ring oscillator to less than 3 Hz of relative linewidth,” Opt. Lett. 15, 221–223 (1990). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited