OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 16, Iss. 4 — Apr. 1, 1999
  • pp: 580–586

Theory of multiple-beam interaction in photorefractive media

N. Korneev, A. Apolinar-Iribe, and J. J. Sánchez-Mondragón  »View Author Affiliations

JOSA B, Vol. 16, Issue 4, pp. 580-586 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (226 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate theoretically the interaction of two or more beams intersecting at a small angle in a photorefractive crystal with a local type of holographic recording. All necessary diffraction orders are taken into account. It is shown that for photorefractive ferroelectrics the number of diffracted beams can be quite large. For negative nonlinearlity the high exponential gain previously predicted for three- or four-wave mixing does not exist if all diffraction orders are considered.

© 1999 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(050.7330) Diffraction and gratings : Volume gratings
(190.5330) Nonlinear optics : Photorefractive optics

N. Korneev, A. Apolinar-Iribe, and J. J. Sánchez-Mondragón, "Theory of multiple-beam interaction in photorefractive media," J. Opt. Soc. Am. B 16, 580-586 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969). [CrossRef]
  2. L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Crystals (Calderon, Oxford, 1996).
  3. R. Magnusson and T. K. Gaylord, “Analysis of multiwave diffraction of thick gratings,” J. Opt. Soc. Am. 67, 1165–1170 (1977). [CrossRef]
  4. N. Korneev, D. Mayorga, S. Stepanov, A. Gerwens, K. Buse, and E. Krätzig, “Enhancement of the photorefractive effect by homogeneous pyroelectric fields,” Appl. Phys. B: Lasers Opt. 66, 393–396 (1998). [CrossRef]
  5. N. Kukhtarev, V. Markov, and S. Odulov, “Transient energy transfer during hologram formation in LiNbO3 in external electric field,” Opt. Commun. 23, 338–343 (1977). [CrossRef]
  6. V. I. Bespalov and V. I. Talanov, “Filamentary structure of light beams in nonlinear liquids,” JETP Lett. 3, 307–310 (1966).
  7. L. B. Au and L. Solymar, “Higher diffraction orders in photorefractive materials,” IEEE J. Quantum Electron. 24, 162–168 (1988). [CrossRef]
  8. A. Roy and K. Singh, “Effect of optical activity on higher-order self-diffraction in an absorptive photorefractive medium: transmission geometry for two-wave mixing,” J. Appl. Phys. 71, 5332–5337 (1992). [CrossRef]
  9. K. H. Ringhofer and L. Solymar, “New gain mechanism for wave amplification in photorefractive materials,” Appl. Phys. Lett. 53, 1039–1040 (1988). [CrossRef]
  10. K. H. Ringhofer and L. Solymar, “3-wave and 4-wave forward mixing in photorefractive materials,” J. Appl. Phys. (N.Y.) 48, 395–400 (1988). [CrossRef]
  11. D. C. Jones and L. Solymar, “Comparison of 2-wave and 3-wave forward mixing in bismuth silicon oxide—theory and experiment,” IEEE J. Quantum Electron. 27, 121–127 (1991). [CrossRef]
  12. D. R. Erbshloe and L. Solymar, “Unidirectional ring resonator in photorefractive bismuth silicon oxide with two pump beams,” Appl. Phys. Lett. 53, 1135–1137 (1988). [CrossRef]
  13. D. R. Erbshloe and L. Solymar, “Linear resonator in photorefractive BSO with two pump beams,” Electron. Lett. 24, 683–684 (1988). [CrossRef]
  14. I. C. Khoo and T. H. Liu, “Probe beam amplification via 2-wave and 4-wave mixing in a nematic liquid-crystal film,” IEEE J. Quantum Electron. 23, 171–173 (1987). [CrossRef]
  15. H. J. Eichler, M. Glotz, A. Kummrov, K. Richter, and X. Yang, “Picosecond pulse amplification by coherent mixing in silicon,” Phys. Rev. A 35, 4673–4678 (1987). [CrossRef] [PubMed]
  16. I. C. Khoo, R. Normandin, T. H. Liu, R. R. Michael, and R. G. Lindquist, “Degenerate multiwave mixing and phase conjugation in silicon,” Phys. Rev. B 40, 7759–7766 (1989). [CrossRef]
  17. B. L. Volodin, B. Kippeln, K. Meerholz, N. Peyghambarian, N. V. Kukhtarev, and H. J. Caulfield, “Study of non-Bragg orders in dynamic self-diffraction in a photorefractive polymer: experiment, theory and applications,” J. Opt. Soc. Am. B 13, 2261–2267 (1996). [CrossRef]
  18. D. C. Jones, S. F. Lyuksyutov, and L. Solymar, “Three-wave and four-wave forward phase-conjugate imaging in photorefractive bismuth silicon oxide,” Opt. Lett. 15, 935–937 (1990). [CrossRef] [PubMed]
  19. J. Takacs, H. C. Ellin, and L. Solymar, “Multiple forward phase conjugation in photorefractive bismuth silicate crystal,” Opt. Commun. 93, 223–226 (1992). [CrossRef]
  20. S. L. Sochava, R. C. Troth, and S. I. Stepanov, “Holographic interferometry using −1 diffraction order in photorefractive Bi12SiO20 and Bi12TiO20 crystals,” J. Opt. Soc. Am. B 9, 1521–1527 (1992). [CrossRef]
  21. L. Solymar and D. J. Cooke, Volume Holography and Volume Gratings (Academic, New York, 1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited