OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 16, Iss. 4 — Apr. 1, 1999
  • pp: 609–619

Numerical models of broad-bandwidth nanosecond optical parametric oscillators

A. V. Smith, Russell J. Gehr, and Mark S. Bowers  »View Author Affiliations


JOSA B, Vol. 16, Issue 4, pp. 609-619 (1999)
http://dx.doi.org/10.1364/JOSAB.16.000609


View Full Text Article

Acrobat PDF (283 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present three new methods for modeling broad-bandwidth, nanosecond optical parametric oscillators in the plane-wave approximation. Each accounts for the group-velocity differences that determine the operating linewidth of unseeded optical parametric oscillators, and each allows the signal and the idler waves to develop from quantum noise. The first two methods are based on split-step integration methods in which nonlinear mixing and propagation are calculated separately on alternate steps. One method relies on Fourier transforming the fields between t and ω to handle propagation, with mixing integrated over a Δz step; the other transforms between z and kz in the propagation step, with mixing integrated over Δt. The third method is based on expansion of the three optical fields in terms of their respective longitudinal empty cavity modes, taking into account the cavity boundary conditions. Equations describing the time development of the mode amplitudes are solved to yield the time dependence of the three output fields. These models exclude diffraction and group-velocity dispersion but can be readily extended to include them.

© 1999 Optical Society of America

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(230.4320) Optical devices : Nonlinear optical devices

Citation
A. V. Smith, Russell J. Gehr, and Mark S. Bowers, "Numerical models of broad-bandwidth nanosecond optical parametric oscillators," J. Opt. Soc. Am. B 16, 609-619 (1999)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-16-4-609


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. V. Smith, W. J. Alford, T. D. Raymond, and M. S. Bowers, “Comparison of a numerical model with measured performance of a seeded, nanosecond KTP optical parametric oscillator,” J. Opt. Soc. Am. B 12, 2253–2267 (1995).
  2. D. J. Armstrong and A. V. Smith, “Tendency of nanosecond optical parametric oscillators to produce purely phase-modulated light,” Opt. Lett. 21, 1634–1636 (1996).
  3. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  4. E. S. Cassedy and M. Jain, “A theoretical study of injection tuning of optical parametric oscillators,” IEEE J. Quantum Electron. QE-15, 1290–1301 (1979).
  5. Y. Kong, Z. Xu, Y. Zhou, D. Deng, X. Zhu, and L. Wu, “The compound cavity optical parametric oscillator: theory and experiment,” IEEE J. Quantum Electron. 34, 439–446 (1998).
  6. T. Schroder, K.-J. Boller, A. Fix, and R. Wallenstein, “Spectral properties and numerical modeling of a critically phase-matched nanosecond LiB3O5 optical parametric oscillator,” Appl. Phys. B: Photophys. Laser Chem. 58, 425–438 (1994).
  7. K.-J. Boller and T. Schroder, “Demonstration of broadband intracavity spectroscopy in a pulsed optical parametric oscillator made of β-barium borate,” J. Opt. Soc. Am. B 10, 1778–1784 (1993).
  8. A. Fix and R. Wallenstein, “Spectral properties of pulsed nanosecond optical parametric oscillators: experimental investigation and numerical analysis,” J. Opt. Soc. Am. B 13, 2484–2497 (1996).
  9. G. Arisholm, “Advanced numerical simulation models for second-order nonlinear interactions,” Proc. SPIE 3685, 86–97 (1999); G. Arisholm, “Quantum noise initiation and macroscopic fluctuations in optical parametric oscillators,” J. Opt. Soc. Am. B 16, 117–127 (1999).
  10. A. Yariv and W. H. Louisell, “Theory of the optical parametric oscillator,” IEEE J. Quantum Electron. QE-2, 418–424 (1966).
  11. T. Debuisschert, “Nanosecond optical parametric oscillators,” Quantum Semiclassic. Opt. 9, 209–219 (1997).
  12. K. D. Shaw, “Spatio-temporal evolution of the intra-cavity fields in a pulsed doubly resonant optical parametric oscillator,” Opt. Commun. 144, 134–160 (1997).
  13. H. J. Bakker, P. C. M. Planken, and H. G. Muller, “Numerical calculation of optical frequency-conversion processes: a new approach,” J. Opt. Soc. Am. B 6, 1665–1672 (1989).
  14. M. Cavallari, G. M. Gale, F. Hache, L. I. Pavlov, and E. Rousseau, “Mid infra-red femtosecond pulse generation by wave-mixing: numerical simulation an experiment,” Opt. Commun. 114, 329–332 (1995).
  15. R. Danielius, A. Dubietis, A. Piskarskas, G. Valiulis, and A. Varanavicius, “Generation of compressed 600–720-nm tunable femtosecond pulses by transient frequency mixing in a β-barium borate crystal,” Opt. Lett. 21, 216–218 (1996).
  16. R. Danelyus, G. Dikchyus, V. Kabelka, A. Piskarskas, A. Stabinis, and Ya. Yasevichyute, “Parametric excitation of light in the picosecond range,” Sov. J. Quantum Electron. 7, 1360–1368 (1977).
  17. S. Fournier, R. Lopez-Martens, C. Le Blanc, E. Baubeau, and F. Salin, “Solitonlike pulse shortening in a femtosecond parametric amplifier,” Opt. Lett. 23, 627–629 (1998).
  18. D. Kim and G.-Y. Xiao, “Distortion of a chirped short pulse in type II second-harmonic generation,” J. Opt. Soc. Am. B 15, 570–576 (1998).
  19. P. W. Milonni, J. M. Auerbach, and D. Eimerl, “Frequency conversion modeling with spatially and temporally varying beams,” Proc. SPIE 2633, 230–241 (1997).
  20. T. Nishikawa and N. Uesugi, “Effects of walk-off and group velocity difference on the optical parametric generation in KTiOPO4 crystals,” J. Appl. Phys. 77, 4941–4947 (1995).
  21. T. Nishikawa and N. Uesugi, “Transverse beam profiles on traveling-wave optical parametric generation in KTiOPO4 crystals,” J. Appl. Phys. 78, 6361–6366 (1995).
  22. G. M. Gale, M. Cavallari, and F. Hache, “Femtosecond visible optical parametric oscillator,” J. Opt. Soc. Am. B 15, 702–714 (1998).
  23. B. Ruffing, A. Nebel, and R. Wallenstein, “All-solid-state cw mode-locked picosecond KTiOAsO4 optical parametric oscillator,” Appl. Phys. B: Photophys. Laser Chem. 67, 537–544 (1998).
  24. M. S. Bowers and S. E. Moody, “Cavity equations for a laser with an externally injected signal,” J. Opt. Soc. Am. B 11, 2266–2275 (1994).
  25. A. V. Smith and M. S. Bowers, “Phase distortions in sum- and difference-frequency mixing in crystals,” J. Opt. Soc. Am. B 12, 49–57 (1995).
  26. SNLO nonlinear optics software is available from A. V. Smith, Dept. 1128, Sandia National Laboratories, 87185–1423, or it may be downloaded from www site http://www.sandia.gov/imrl/XWEB1128/xxtal.htm. Methods 1 and 2 are run by the Run and Movie buttons of function PW-OPO-BB, respectively.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited