OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 16, Iss. 5 — May. 1, 1999
  • pp: 717–721

High-efficiency, continuous-wave Raman lasers

Kevin S. Repasky, Lei Meng, Jason K. Brasseur, John L. Carlsten, and Rand C. Swanson  »View Author Affiliations

JOSA B, Vol. 16, Issue 5, pp. 717-721 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (180 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A modified steady-state laser theory that describes a continuous wave (cw) off-resonant Raman laser with asymmetric reflectivities for the cavity is presented. This theory takes into account different mirror reflectivities of the front and back mirrors of the Raman laser cavity for both the pump and the Stokes wavelengths. An off-resonant cw Raman laser pumped at 795 nm in diatomic hydrogen (H2) is modeled by use of the results of the steady-state theory. The predicted threshold for the cw Raman laser is 2.4 mW, and a maximum Stokes photon conversion efficiency of 83.0% is predicted for a pump power of 9.9 mW. The high Stokes photon conversion efficiency is obtained with mismatched pump-wavelength reflectivities of the front and the back mirrors of the laser cavity. By a judicious choice of mirror reflectivities, both the backreflected pump power and the transmitted pump power can be minimized, thus making a maximum amount of pump power available for nonlinear Stokes conversion.

© 1999 Optical Society of America

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3550) Lasers and laser optics : Lasers, Raman
(140.4780) Lasers and laser optics : Optical resonators
(190.5650) Nonlinear optics : Raman effect
(290.5860) Scattering : Scattering, Raman

Kevin S. Repasky, Lei Meng, Jason K. Brasseur, John L. Carlsten, and Rand C. Swanson, "High-efficiency, continuous-wave Raman lasers," J. Opt. Soc. Am. B 16, 717-721 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989).
  2. N. Bloemberg, “The stimulated Raman effect,” Am. J. Phys. 35, 989 (1967). [CrossRef]
  3. P. Rabinowitz, A. Stein, R. Brickman, and A. Kaldor, “Efficient tunable H2 Raman lasers,” Appl. Phys. Lett. 35, 739 (1979). [CrossRef]
  4. L. A. Harris and J. N. Lavinos, “Generation of nanosecond infrared pulses tunable from 2.8 μm to 16 μm by efficient stimulated electronic Raman scattering,” Appl. Opt. 26, 3996 (1987). [CrossRef] [PubMed]
  5. J. L. Carlsten and R. G. Wenzel, “Stimulated Raman scattering in CO2-pumped para H2,” IEEE J. Quantum Electron. QE-19, 1407 (1983). [CrossRef]
  6. R. Max, U. Huber, I. Abdul-Halim, J. Heppner, Y. Ni, G. Willenberg, and C. O. Weiss, “Far infrared cw Raman laser gain in 14NH3,” IEEE J. Quantum Electron. QE-17, 1123 (1981).
  7. M. Poelker and P. Kumar, “Sodium Raman laser: direct measurement of narrowband Raman laser gain,” Opt. Lett. 17, 399 (1992). [CrossRef] [PubMed]
  8. S. N. Jabr, “Gain and noise characteristics of a continuous-wave Raman laser,” Opt. Lett. 12, 690 (1987). [CrossRef] [PubMed]
  9. J. K. Brasseur, K. S. Repasky, and J. L. Carlsten, “Continuous-wave Raman laser in H2,” Opt. Lett. 23, 367 (1998). [CrossRef]
  10. K. S. Repasky, J. K. Brasseur, L. Meng, and J. L. Carlsten, “Performance and design of an off resonant continuous-wave Raman laser,” J. Opt. Soc. Am. B 15, 1667 (1998). [CrossRef]
  11. A. Fried, D. K. Killinger, and H. I. Schiff, eds., Tunable Laser Spectroscopy, Lidar, and Dial Techniques for Environmental and Industrial Measurements, Proc. SPIE 2112 (1993).
  12. W. K. Bischel and M. J. Dyer, “Temperature dependence of the Raman linewidth and lineshift for the Q(0)–Q(1) transition in normal and para H2,” Phys. Rev. A 33, 3113 (1986). [CrossRef] [PubMed]
  13. J. J. Ottusch and D. A. Rockwell, “Measurements of Raman gain coefficients in hydrogen, deuterium, and methane,” IEEE J. Quantum Electron. 24, 2076 (1989). [CrossRef]
  14. W. K. Bischel and M. J. Dyer, “Wavelength dependence of the absolute Raman gain coefficients for the Q(1) transition in H2,” J. Opt. Soc. Am. B 3, 677 (1986). [CrossRef]
  15. Research ElectroOptics Inc, 1855 South 57th court, Boulder, Colo. 80301 can produce the mirrors with the reflectivities used in this paper.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited