OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 16, Iss. 5 — May. 1, 1999
  • pp: 741–753

Analysis of lithium niobate all-optical wavelength shifters for the third spectral window

Katia Gallo and Gaetano Assanto  »View Author Affiliations

JOSA B, Vol. 16, Issue 5, pp. 741-753 (1999)

View Full Text Article

Acrobat PDF (392 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We numerically investigate the performance of wavelength shifters in quasi-phase-matched channel waveguides in lithium niobate. The shifters are based on cascaded quadratic processes, namely, sum- and difference-frequency generation, and permit efficient conversion and signal gain near 1.55 μm over the full bandwidth of erbium-doped fiber amplifiers.

© 1999 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.3730) Integrated optics : Lithium niobate
(190.2640) Nonlinear optics : Stimulated scattering, modulation, etc.
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics

Katia Gallo and Gaetano Assanto, "Analysis of lithium niobate all-optical wavelength shifters for the third spectral window," J. Opt. Soc. Am. B 16, 741-753 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14, 955–966 (1996).
  2. H. Masuda, S. Kawai, K. I. Suzuki, and K. Aida, “Ultrawide 75-nm 3-dB gain-band optical amplification with erbium-doped fluoride fiber amplifiers and distributed Raman amplifiers,” IEEE Photonics Technol. Lett. 10, 516–518 (1998).
  3. K. Oberman, S. Kindt, D. Breuer, and K. Petermann, “Performance analysis of wavelength converters based on cross-gain modulation in semiconductor optical amplifiers,” J. Lightwave Technol. 16, 78–85 (1998).
  4. B. E. Little, H. Kuwatsuka, and H. Ishikawa, “Nondegenerate four-wave mixing efficiencies in DFB laser wavelength converters,” IEEE Photonics Technol. Lett. 10, 591–521 (1998).
  5. J. Zhou, N. Park, K. J. Vahala, M. A. Newkirk, and B. I. Miller, “Broadband wavelength conversion with amplification by four-wave mixing in semiconductor travelling wave amplifiers,” Electron. Lett. 30, 859–860 (1994).
  6. A. Mecozzi, S. Scotti, A. D’Ottavi, E. Iannone, and P. Spano, “Four-wave mixing in traveling-wave semiconductor amplifiers,” IEEE J. Quantum Electron. 31, 689–699 (1995).
  7. A. Uchida, M. Takeoka, T. Nakata, and F. Kannari, “Wide-range all-optical wavelength conversion using dual-wavelength-pumped fiber Raman converter,” J. Lightwave Technol. 16, 92–99 (1998).
  8. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. Lett. 127, 1918–1939 (1962).
  9. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
  10. C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63, 1170–1172 (1993).
  11. C. Q. Xu, H. Okayama, and T. Kamijoh, “Broadband multichannel wavelength conversions for optical communication systems using quasi-phase-matched difference frequency generation,” Jpn. J. Appl. Phys., Part 1 34L, 1543–1545 (1995).
  12. M. H. Chou, M. A. Arbore, M. M. Fejer, A. Galvanauskas, and D. Harter, “Efficient generation of infrared light in LiNbO3 waveguides with integrated coupling structures,” in Nonlinear Guided Waves and Their Applications, Vol. 5 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 54–56.
  13. M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5-μm-band wavelength conversion based on difference frequency mixing in LiNbO3 waveguides with integrated coupling structures,” Opt. Lett. 23, 1004–1006 (1998).
  14. S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
  15. G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996); G. Assanto, “Quadratic cascading: effects and applications,” in Beam Shaping and Control with Nonlinear Optics, F. Kajzar and R. Reinisch, eds. (Plenum, New York, 1997), pp. 341–374.
  16. K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71, 1020–1022 (1997).
  17. L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical paramet-ric oscillators,” IEEE J. Quantum Electron. 33, 1663–1672 (1997).
  18. E. Yablonovitch, C. Flytzanis, and N. Bloembergen, “Anisotropic three-wave and double two-wave frequency mixing in GaAs,” Phys. Rev. Lett. 29, 865–868 (1972).
  19. H. Tan, G. P. Banfi, and A. Tomaselli, “Optical frequency mixing through cascaded second-order processes in β-barium borate,” Appl. Phys. Lett. 63, 2472–2474 (1993).
  20. G. P. Banfi, P. K. Datta, V. Degiorgio, G. Donelli, D. Fortusini, and J. N. Sherwood, “Frequency shifting through cascade second-order processes in an N-(4-nitrophenyl)-L-prolinol crystal,” Opt. Lett. 23, 439–441 (1998).
  21. O. Gorbounova, Y. J. Ding, J. B. Khurgin, S. J. Lee, and A. E. Craig, “Optical frequency shifters based on cascaded second-order nonlinear processes,” Opt. Lett. 21, 558–560 (1996).
  22. M. A. M. Marte, “Competing nonlinearities,” Phys. Rev. A 49, R3166–R3169 (1994).
  23. M. L. Bortz and M. M. Fejer, “Annealed proton-exchanged LiNbO3 waveguides,” Opt. Lett. 16, 1844–1846 (1991).
  24. G. L. Lawrence and J. Edwards, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–374 (1984).
  25. M. L. Bortz, L. A. Eyres, and M. M. Fejer, “Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged waveguides,” Appl. Phys. Lett. 62, 2012–2014 (1993).
  26. K. Parameswaran, E. L. Ginzton Laboratory, Stanford University, Stanford, Calif. 94305 (personal communication, 1998).
  27. G. Assanto, G. I. Stegeman, M. Sheik-Bahae, and E. Van Stryland, “Coherent interactions for all-optical signal pro-cessing via quadratic nonlinearities,” IEEE J. Quantum Electron. 31, 673–681 (1995).
  28. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” Opt. Lett. 21, 591–593 (1996).
  29. P. E. Powers, T. J. Kulp, and S. E. Bisson, “Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design,” Opt. Lett. 23, 159–161 (1998).
  30. L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33, 1663–1672 (1997).
  31. P. E. Britton, D. Taverner, K. Puech, D. J. Richardson, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Optical parametric oscillation in periodically poled lithium niobate driven by a diode-pumped Q-switched erbium fiber laser,” Opt. Lett. 23, 582–584 (1998).
  32. Y. S. Kim and R. T. Smith, “Thermal expansion of lithium tantalate and lithium niobate single crystals,” J. Appl. Phys. 40, 4637–4641 (1969).
  33. I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Improved performance of a wavelength converter based on dual pump four-wave-mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett. 72, 2499–2501 (1998).
  34. I. Zacharopoulos, I. Tomkos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 10, 352–354 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited