OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 16, Iss. 5 — May. 1, 1999
  • pp: 781–791

Efficient frequency conversion at low power with periodic refocusing

Gerald T. Moore and Karl Koch  »View Author Affiliations

JOSA B, Vol. 16, Issue 5, pp. 781-791 (1999)

View Full Text Article

Acrobat PDF (337 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By using multiple crystals of periodically poled lithium niobate arranged in a fan-fold configuration with mirrors between the crystals to periodically refocus the light and retroreflect it after the final crystal, one can achieve very long interaction lengths and efficient frequency conversion at low input power. We present the theory and numerical simulations of devices using this concept, including devices for singly resonant optical parametric oscillation and second-harmonic generation. We find quantitative agreement between plane-wave analysis of these devices and numerical simulations in three spatial dimensions.

© 1999 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers

Gerald T. Moore and Karl Koch, "Efficient frequency conversion at low power with periodic refocusing," J. Opt. Soc. Am. B 16, 781-791 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “93% pump depletion in a continuous-wave, singly resonant optical parametric oscillator,” Opt. Lett. 21, 1336–1338 (1996).
  2. G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997).
  3. G. Imeshev, M. Proctor, and M. M. Fejer, “Phase correction in double-pass quasi-phase-matched second-harmonic generation with a wedged crystal,” Opt. Lett. 23, 165–167 (1998).
  4. G. T. Moore, K. Koch, and E. C. Cheung, “Theory of multi-stage intracavity frequency conversion in optical parametric oscillators,” in Solid State Lasers and Nonlinear Crystals, G. J. Quarles, L. Esterowitz, and L. K. Cheng, eds., Proc. SPIE 2379, 84–94 (1995).
  5. G. T. Moore and K. Koch, “The tandem optical parametric oscillator,” IEEE J. Quantum Electron. 32, 2085–2094 (1996).
  6. G. T. Moore, K. Koch, and M. E. Dearborn, “Gain enhancement of multi-stage parametric intracavity frequency conversion,” IEEE J. Quantum Electron. 33, 1734–1742 (1997).
  7. S. A. Collins, Jr., “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. 60, 1168–1177 (1970).
  8. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966).
  9. D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
  10. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
  11. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
  12. R. A. Baumgartner and R. L. Byer, “Optical parametric amplification,” IEEE J. Quantum Electron. QE-15, 432–444 (1979).
  13. Notation and properties of elliptic integrals and Jacobi elliptic functions taken from M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New, York, 1965), Chap. 16 and 17, pp. 576–626.
  14. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
  15. R. G. Smith, “Effects of momentum mismatch on parametric gain,” J. Appl. Phys. 41, 4121–4124 (1970).
  16. Elliptic integrals and Jacobi elliptic functions were computed using programs in W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vettering, Numerical Recipes in C (Cambridge U. Press, Cambridge, UK, 1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited