OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 16, Iss. 5 — May. 1, 1999
  • pp: 835–847

Attached and radiated electromagnetic fields of an electric point dipole

Ole Keller  »View Author Affiliations


JOSA B, Vol. 16, Issue 5, pp. 835-847 (1999)
http://dx.doi.org/10.1364/JOSAB.16.000835


View Full Text Article

Enhanced HTML    Acrobat PDF (378 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The standard dyadic Green function description of the electromagnetic field generated by an electric point dipole is modified (and corrected) so that a rigorous classical theory for the attached and radiated parts of the near field appears. The present propagator formalism follows from analysis of the transverse and longitudinal dipole electrodynamics. Elimination of both the transverse and the longitudinal self-fields leads to a description of the radiated dipole field that enables one to obtain the associated energy flux in the near- and mid-field zones also and that is correctly retarded (with the vacuum speed of light) everywhere in space. The related retarded transverse propagator exists in the time (space) domain, whereas the standard propagator exists only in the frequency (space) domain. As a forerunner to an analysis of the Weyl expansions for the standard, longitudinal self-field and retarded transverse propagators, the plane-wave mode expansions of these propagators are investigated, and contour integrations are specified in such a manner that the rigorous Green function description is regained. It is found that, in order for the retarded transverse propagator description to be consistent in the near-field zone, the Weyl expansion for this propagator has to contain evanescent components not only for wave numbers larger than the vacuum wave number but in the entire angular spectrum. The present theory may influence our view of optical near-field phenomena and (classical) photon tunneling because in both of these fields a proper identification of attached and radiated fields seems needed.

© 1999 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(350.5500) Other areas of optics : Propagation
(350.5610) Other areas of optics : Radiation

Citation
Ole Keller, "Attached and radiated electromagnetic fields of an electric point dipole," J. Opt. Soc. Am. B 16, 835-847 (1999)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-16-5-835

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited