OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 16, Iss. 5 — May. 1, 1999
  • pp: 835–847

Attached and radiated electromagnetic fields of an electric point dipole

Ole Keller  »View Author Affiliations


JOSA B, Vol. 16, Issue 5, pp. 835-847 (1999)
http://dx.doi.org/10.1364/JOSAB.16.000835


View Full Text Article

Acrobat PDF (378 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The standard dyadic Green function description of the electromagnetic field generated by an electric point dipole is modified (and corrected) so that a rigorous classical theory for the attached and radiated parts of the near field appears. The present propagator formalism follows from analysis of the transverse and longitudinal dipole electrodynamics. Elimination of both the transverse and the longitudinal self-fields leads to a description of the radiated dipole field that enables one to obtain the associated energy flux in the near- and mid-field zones also and that is correctly retarded (with the vacuum speed of light) everywhere in space. The related retarded transverse propagator exists in the time (space) domain, whereas the standard propagator exists only in the frequency (space) domain. As a forerunner to an analysis of the Weyl expansions for the standard, longitudinal self-field and retarded transverse propagators, the plane-wave mode expansions of these propagators are investigated, and contour integrations are specified in such a manner that the rigorous Green function description is regained. It is found that, in order for the retarded transverse propagator description to be consistent in the near-field zone, the Weyl expansion for this propagator has to contain evanescent components not only for wave numbers larger than the vacuum wave number but in the entire angular spectrum. The present theory may influence our view of optical near-field phenomena and (classical) photon tunneling because in both of these fields a proper identification of attached and radiated fields seems needed.

© 1999 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(350.5500) Other areas of optics : Propagation
(350.5610) Other areas of optics : Radiation

Citation
Ole Keller, "Attached and radiated electromagnetic fields of an electric point dipole," J. Opt. Soc. Am. B 16, 835-847 (1999)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-16-5-835


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. S. R. de Groot and L. G. Suttorp, Foundations of Electrodynamics (North-Holland, Amsterdam, 1972).
  2. J. Van Kranendonk and J. E. Sipe, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1977), Vol. XV, p. 245.
  3. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975).
  4. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and Atoms, Introduction to Quantum Electrodynamics (Wiley, New York, 1989).
  5. O. Keller and P. Sønderkær, in Optical Testing and Metrology II, C. P. Grover, ed., Proc. SPIE 954, 344 (1988).
  6. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  7. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).
  8. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983).
  9. P. W. Barber and R. K. Chang, eds., Optical Effects Associated with Small Particles, Vol. 1 of Advanced Series of Applied Physics (World Scientific, Singapore, 1988), and references herein.
  10. O. Keller, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1997), Vol. XXXVII, p. 257, and references herein.
  11. B. Labani, C. Girard, D. Courjon, and D. van Labeke, J. Opt. Soc. Am. B 7, 936 (1990).
  12. C. Girard and D. Courjon, Phys. Rev. B 42, 9340 (1990).
  13. C. Girard and X. Boujou, J. Chem. Phys. 95, 2056 (1991).
  14. O. Keller, M. Xiao, and S. I. Bozhevolnyi, Surf. Sci. 280, 217 (1993).
  15. M. Nieto-Vesperinas and N. Garcia, eds., Optics at the Nanometer Scale (Kluwer, Dordrecht, The Netherlands, 1996), and references herein.
  16. C. Girard and A. Dereux, Progr. Phys. 59, 657 (1996), and references herein.
  17. M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1970).
  18. E. Wolf, in Coherence and Quantum Optics, L. Mandel and E. Wolf, eds. (Plenum, New York, 1973), p. 339.
  19. O. Keller, Phys. Rev. B 34, 3883 (1986).
  20. C.-T. Tai, Dyadic Green Functions in Electromagnetic Theory, 2nd ed. (IEEE Press, New York, 1994).
  21. O. Keller, Phys. Rev. A 58, 3407 (1998).
  22. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (Wiley, New York, 1991).
  23. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, New York, 1995).
  24. H. Weyl, Ann. Phys. (Leipzig) 60, 481 (1919).
  25. O. Keller, Phys. Rep. 268, 85 (1996).
  26. A. Baños, Dipole Radiation in the Presence of a Conducting Half-Space (Pergamon, Oxford, 1966).
  27. G. S. Agarwal, Opt. Commun. 42, 205 (1982).
  28. G. S. Agarwal and S. D. Gupta, Opt. Commun. 119, 591 (1995).
  29. O. Keller, J. Nonlinear Opt. Phys. Mater. 5, 109 (1996).
  30. O. Keller, in Notions and Perspectives of Nonlinear Optics, O. Keller, ed. (World Scientific, London, 1996), p. 140.
  31. H. F. Arnoldus and T. F. George, Phys. Rev. A 51, 4250 (1995).
  32. T. Andersen and O. Keller, Phys. Rev. B 57, 14793 (1998).
  33. M. Xiao, Opt. Commun. 132, 403 (1996).
  34. M. Xiao, Chem. Phys. Lett. 258, 363 (1996).
  35. M. Xiao, J. Mod. Opt. 44, 327 (1997).
  36. M. Xiao, J. Mod. Opt. 44, 1609 (1997).
  37. E. Wolf and J. T. Foley, Opt. Lett. 23, 16 (1998).
  38. E. Wolf, J. Opt. Soc. Am. 70, 1311 (1980).
  39. G. S. Agarwal and E. Wolf, J. Opt. Soc. Am. 72, 321 (1982).
  40. G. S. Agarwal, A. T. Friberg, and E. Wolf, J. Opt. Soc. Am. 72, 861 (1982).
  41. G. S. Agarwal, A. T. Friberg, and E. Wolf, Opt. Commun. 43, 446 (1982).
  42. G. S. Agarwal, A. T. Friberg, and E. Wolf, J. Opt. Soc. Am. 73, 529 (1983).
  43. A. T. Friberg and P. D. Drummond, J. Opt. Soc. Am. 73, 1216 (1983).
  44. M. Nieto-Vesperinas and E. Wolf, J. Opt. Soc. Am. A 2, 1429 (1985).
  45. S. I. Bozhevolnyi, O. Keller, and I. I. Smolyaninov, Opt. Lett. 19, 1 (1994).
  46. O. Keller, presented at the Seminar on Problems of Quantum Optics, Dubna, USSR, September 30–October 4, 1991.
  47. E. Goldstein, K. Plättner, and P. Meystre, Quantum Semiclassic. Opt. 7, 743 (1995).
  48. T. Andersen and O. Keller, Phys. Scr. 58, 132 (1998).
  49. L. V. Lorenz, Philos. Mag. 34, 287 (1867).
  50. R. Penrose and W. Rindler, Spinors and Space-Time (Cambridge, 1984), Vol. I.
  51. J. Van Bladel, IEEE Trans. Antennas Propag. 33, 69 (1991).
  52. J. R. Ackerhalt, P. Knight, and J. H. Eberly, Phys. Rev. Lett. 30, 456 (1973).
  53. K. Wodkiewicz and J. H. Eberly, Ann. Phys. (Leipzig) 101, 574 (1976).
  54. H. J. Kimble and L. Mandel, Phys. Rev. A 15, 689 (1977).
  55. O. L. Brill and B. Goodman, Am. J. Phys. 35, 382 (1967).
  56. E. A. Power and S. Zinau, Philos. Trans. R. Soc. London, Ser. A 251, 427 (1959).
  57. R. G. Woolley, Mol. Phys. 22, 1013 (1971).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited