OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 16, Iss. 6 — Jun. 1, 1999
  • pp: 1016–1024

Generalized matrix-optics description of soft-x-ray lasers

Jun Yang, Dianyuan Fan, Shiji Wang, and Yuan Gu  »View Author Affiliations

JOSA B, Vol. 16, Issue 6, pp. 1016-1024 (1999)

View Full Text Article

Acrobat PDF (308 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We derive a novel expression for the mutual-coherence function for plasma x-ray lasers using generalized matrix optics. The expression is valid when optical systems can be described by complex ABCDGH beam matrices and when gain saturation can be ignored. The model is used to analyze the output-beam characteristics and the spatial-coherence properties of a general class of x-ray lasers that contain exploding-foil, slab, and curved targets. Comparison of our results with numerical solutions of the paraxial wave equation and previous experimental data shows good agreement.

© 1999 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(080.2730) Geometric optics : Matrix methods in paraxial optics
(140.7240) Lasers and laser optics : UV, EUV, and X-ray lasers

Jun Yang, Dianyuan Fan, Shiji Wang, and Yuan Gu, "Generalized matrix-optics description of soft-x-ray lasers," J. Opt. Soc. Am. B 16, 1016-1024 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. D. Matthews, M. Rosen, S. Brown, N. Ceglio, D. Eder, A. Hawryluk, C. Keane, R. London, B. MacGowan, S. Maxon, D. Nilson, J. Scofield, and J. Trebes, “X-ray laser research at the Lawrence Livermore National Laboratory Nova laser facility,” J. Opt. Soc. Am. B 4, 575–587 (1987).
  2. S. Wang, Y. Gu, G. Zhou, S. Yu, S. Fu, Y. Ni, J. Wu, Z. Zhou, G. Han, Z. Tao, Z. Lin, S. Wang, W. Chen, D. Fan, G. Zhang, J. Sheng, H. Peng, T. Zhang, and Y. Shao, “Experimental investigation of high-gain Ne-like Ge soft x-ray laser by double-massive-target coupling,” J. Opt. Soc. Am. B 9, 360–368 (1992).
  3. A. Carillon, H. Z. Chen, P. Dhez, L. Dwivedi, J. Jacoby, P. Jaegle, G. Jamelot, J. Zhang, M. H. Key, A. Kidd, A. Klisnick, R. Kodama, J. Krishnan, C. L. S. Lewis, D. Neely, P. Norreys, D. O’Neill, G. J. Pert, S. A. Ramsden, J. P. Raucourt, G. J. Tallents, and J. Uhomoibhi, “Saturated and near-diffraction-limited operation of an XUV laser at 23.6 nm,” Phys. Rev. Lett. 68, 2917–2920 (1992).
  4. R. Kodama, D. Neely, Y. Kato, H. Daido, K. Murai, G. Yuan, A. MacPhee, and C. L. S. Lewis, “Generation of small-divergence soft x-ray laser by plasma waveguiding with a curved target,” Phys. Rev. Lett. 73, 3215–3218 (1994).
  5. N. M. Ceglio, D. G. Stearns, D. P. Gaines, A. M. Hawryluk, and J. E. Trebes, “Mutipass amplification of soft x-rays in a laser cavity,” Opt. Lett. 13, 108–110 (1988).
  6. G. M. Shimkaveg, M. R. Carter, R. S. Walling, J. M. Ticehurst, R. A. London, and R. E. Stewart, “Oscillator-amplifier experiments in neon-like yttrium,” in X-Ray Lasers 1992, E. E. Fill, ed., IOP Conf. Ser. 125 (Institute of Physics, Bristol, UK, 1992), pp. 61–66.
  7. S. Wang, Y. Gu, G. Zhou, S. Yu, Y. Ni, Y. Xiong, S. Fu, C. Mao, Z. Zhou, B. Wang, Y. Zeng, G. Han, G. Huang, D. Fan, Z. Lin, and X. Deng, “Achievement of soft-x-ray laser with nearly saturated intensity and minimum divergence angle ~1 mrad,” Chin. J. Lasers B 3, 507–510 (1994), and references therein.
  8. J. Nilsen and J. C. Moreno, “Monochromatic lasing at 182A° in neonlike selenium,” Phys. Rev. Lett. 74, 3376–3379 (1995).
  9. J. Zhang, A. G. MacPhee, J. Lin, E. Wolfrum, R. Smith, C. Danson, M. H. Key, C. L. S. Lewis, D. Neely, J. Nilsen, G. J. Pert, G. J. Tallents, and J. S. Wark, “A saturated x-ray laser beam at 7 nanometers,” Science 276, 1097–1100 (1997), and references therein.
  10. R. A. London, “Beam optics of exploding foil plasma x-ray lasers,” Phys. Fluids 31, 184–192 (1988).
  11. O. Zahavi, G. Hazak, and Z. Zinamon, “Study of amplified spontaneous emission systems by the ray-tracing technique,” J. Opt. Soc. Am. B 10, 271–278 (1993).
  12. G. Hazak and A. Bar-Shalom, “Mode-selecting effects and coherence in hot-plasma x-ray lasers,” Phys. Rev. A 40, 7055–7064 (1989).
  13. R. A. London, M. Strauss, and M. D. Rosen, “Modal analysis of x-ray laser coherence,” Phys. Rev. Lett. 65, 563–566 (1990).
  14. P. Amendt and R. A. London, “Optimization of single-stage x-ray laser coherence,” Phys. Rev. A 47, 4348–4363 (1993).
  15. M. D. Feit and J. A. Fleck, Jr., “Wave-optics description of laboratory soft-x-ray lasers,” J. Opt. Soc. Am. B 7, 2048–2060 (1990).
  16. R. P. Ratowsky and R. A. London, “Propagation of mutual coherence in refractive x-ray lasers using a WKB method,” Phys. Rev. A 51, 2361–2370 (1995).
  17. P. Baues, “Huygens’ principle in inhomogeneous, isotropic media and a general integral equation applicable to optical resonators,” Opto-Electron. 1, 37–44 (1969).
  18. S. A. Collins, “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. 60, 1168–1177 (1970).
  19. D. Fan, “Diffraction integral of optical systems and its application,” Chin. J. Lasers 7, 23–33 (1980), in Chinese.
  20. M. Nazarathy and J. Shamir, “First-order optics: operator representation for systems with loss or gain,” J. Opt. Soc. Am. 72, 1398–1408 (1982).
  21. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1985), pp. 792–797.
  22. A. A. Tovar and L. W. Casperson, “Generalized beam matrices: Gaussian beam propagation in misaligned complex optical system,” J. Opt. Soc. Am. A 12, 1522–1533 (1995); “Generalized beam matrices. III. Application to diffraction analysis,” J. Opt. Soc. Am. A 13, 2239–2246 (1996).
  23. J. Arnaud, Beam and Fiber Optics (Academic, New York, 1976), pp. 79–81.
  24. M. J. Bastiaans, “Application of the Wigner distribution function to partially coherent light,” J. Opt. Soc. Am. A 3, 1227–1238 (1986).
  25. A. E. Siegman, “New developments in laser resonators,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE 1224, 2–14 (1990).
  26. F. Gori, “Collett–Wolf sources and multimode lasers,” Opt. Commun. 34, 301–305 (1980).
  27. A. Starikov and E. Wolf, “Coherent-mode representation of Gaussian Schell-model sources and of their radiation fields,” J. Opt. Soc. Am. 72, 923–928 (1982).
  28. R. Simon, E. C. G. Sudarsdhan, and N. Mukunda, “Generalized rays in first-order optics: transformation properties of Gaussian Schell-model fields,” Phys. Rev. A 29, 3273–3279 (1984).
  29. A. T. Friberg and J. Turunen, “Imaging of Gaussian Schell-model sources,” J. Opt. Soc. Am. A 5, 713–720 (1988).
  30. M. Kauderer, “Gaussian–Schell model sources in one-dimensional first-order systems with loss or gain,” Appl. Opt. 32, 999–1017 (1993).
  31. D. Fan, “The Fresnel number in terms of ray matrix elements,” Acta Opt. Sin. 3, 43–49 (1983), in Chinese.
  32. L. W. Casperson, “Gaussian light beams in inhomogeneous media,” Appl. Opt. 12, 2434–2441 (1973).
  33. E. E. Fill, “Gain guiding of x-ray laser beams,” Opt. Commun. 67, 441–445 (1988).
  34. R. A. London, “Development of coherent x-ray lasers,” Phys. Fluids B 5, 2707–2713 (1993).
  35. L. B. Da Silva, T. W. Barbee, Jr., R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron density measurements of high density plasma using soft x-ray laser interferometry,” Phys. Rev. Lett. 74, 3991–3994 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited