OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 16, Iss. 6 — Jun. 1, 1999
  • pp: 905–910

Light-amplification competition between fanning noise and the signal beam in doped lithium niobate crystals

Guoquan Zhang, Nouel Y. Kamber, Jingjun Xu, Simin Liu, Qian Sun, and Guangyin Zhang  »View Author Affiliations


JOSA B, Vol. 16, Issue 6, pp. 905-910 (1999)
http://dx.doi.org/10.1364/JOSAB.16.000905


View Full Text Article

Acrobat PDF (238 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Based on a multi-three-wave interaction model, we theoretically analyze the intense amplification competition between fanning noise and the signal beam in doped lithium niobate crystals. Our results show that the signal beam can be most effectively amplified for a specific value of the photovoltaic field because of the amplification competition between fanning noise and the signal beam. When the threshold effect of incident-light intensity for photorefractive light-induced scattering is taken into account in LiNbO<sub>3</sub>:Fe, M (M= Mg<sup>2+</sup>, Zn<sup>2+</sup>, In<sup>3+</sup>, Sc<sup>3+</sup>) crystals, the signal beam can be most effectively amplified for a specific pump intensity.

© 1999 Optical Society of America

OCIS Codes
(160.3730) Materials : Lithium niobate
(160.5320) Materials : Photorefractive materials
(190.5330) Nonlinear optics : Photorefractive optics

Citation
Guoquan Zhang, Nouel Y. Kamber, Jingjun Xu, Simin Liu, Qian Sun, and Guangyin Zhang, "Light-amplification competition between fanning noise and the signal beam in doped lithium niobate crystals," J. Opt. Soc. Am. B 16, 905-910 (1999)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-16-6-905


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. P. Yeh, Introduction to Photorefractive Nonlinear Optics, Wiley Series in Pure and Applied Optics (Wiley, New York, 1993), pp. 183–247.
  2. Q. B. He and P. Yeh, “Fanning noise reduction in photorefractive amplifiers using incoherent erasures,” Appl. Opt. 33, 283–287 (1994).
  3. G.-Q. Zhang, S.-M. Liu, G.-Y. Tian, J.-J. Xu, Q.-A. Sun, and G.-Y. Zhang, “New noise-suppression technique in photorefractive crystals,” Appl. Opt. 36, 1815–1819 (1997).
  4. H. Rajbenbach, A. Delboulbé, and J. P. Huignard, “Noise suppression in photorefractive image amplifiers,” Opt. Lett. 14, 1275–1277 (1989).
  5. G.-Y. Zhang, J.-J. Xu, S.-M. Liu, Q.-A. Sun, G.-Q. Zhang, Q.-Y. Fang, and C.-L. Ma, “Study of resistance against photorefractive light-induced scattering in LiNbO3:Fe, Mg crystals,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications, F. T. S. Yu, ed., Proc. SPIE 2529, 14–17 (1995).
  6. T. R. Volk, N. V. Razumovski, A. V. Mamaev, and N. M. Rubinina, “Hologram recording in Zn-doped LiNbO3 crystals,” J. Opt. Soc. Am. B 13, 1457–1460 (1996).
  7. G.-Q. Zhang, G.-Y. Zhang, S.-M. Liu, J.-J. Xu, G.-Y. Tian, and Q.-A. Sun, “Theoretical study of resistance against light-induced scattering in LiNbO3:M (M=Mg2+, Zn2+, In3+, Sc3+) crystals,” Opt. Lett. 22, 1666–1668 (1997).
  8. G.-Q. Zhang, G.-Y. Zhang, S.-M. Liu, J.-J. Xu, Q.-A. Sun, and X.-Z. Zhang, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LiNbO3:Fe, M (M=Mg2+, Zn2+, In3+) crystals,” J. Appl. Phys. 83, 4392–4396 (1998).
  9. Ref. 1, pp. 118–134.
  10. G. C. Valley and J. F. Lam, “Theory of photorefractive effects in electro-optic crystals,” in Photorefractive Materials and Their Application I, P. Günter and J. P. Huignard, eds. Vol. 61 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988), p. 82.
  11. F. Jermann and K. Buse, “Light-induced thermal gratings in LiNbO3:Fe,” Appl. Phys. B: Lasers Opt. 59, 437–443 (1994).
  12. G. Zhang, Y. Wu, S. Liu, and J. Wang, “Light-climbing effect in thin LiNbO3:Fe, wafers,” Chin. Phys. Lasers 14, 606–609 (1987).
  13. S.-M. Liu, J.-J. Xu, G.-Y. Zhang, and Y.-Q. Wu, “Light-climbing effect in LiNbO3:Fe crystal,” Appl. Opt. 33, 997–999 (1994).
  14. G.-Q. Zhang, G.-Y. Tian, S.-M. Liu, J.-J. Xu, G.-Y. Zhang, and Q.-A. Sun, “Noise amplification mechanism in LiNbO3:Fe crystal sheets,” J. Opt. Soc. Am. B 14, 2823–2830 (1997).
  15. L. B. Au and L. Solymar, “Amplification in photorefractive materials via a higher order wave,” Appl. Phys. B: Photophys. Laser Chem. 45, 125–128 (1988).
  16. Y. Furukawa, K. Kitamura, Y. Ji, G. Montemazzani, M. Zgonik, C. Medrano, and P. Güner, “Photorefractive properties of iron-doped stoichiometric lithium niobate,” Opt. Lett. 22, 501–503 (1997).
  17. K. Kitamura, Y. Furukawa, Y. Ji, M. Zgonik, C. Medrano, G. Montemezzani, and P. Günter, “Photorefractive effect in LiNbO3 crystals enhanced by stoichiometry control,” J. Appl. Phys. 82, 1006–1009 (1997).
  18. F. Jermann, M. Simon, and E. Kratzig, “Photorefractive properties of congruent and stoichiometric lithium niobate at high light intensities,” J. Opt. Soc. Am. B 12, 2066–2070 (1995).
  19. S. M. Kostritskii and O. G. Sevostyanov, “Influence of intrinsic defects on light-induced changes in the refractive index of lithium niobate crystals,” Appl. Phys. B: Lasers Opt. 65, 527–533 (1997).
  20. R. Sommerfeldt, L. Holtmann, E. Kratzig, and B. C. Grabmaier, “Influence of Mg doping and composition on the light-induced charge transport in LiNbO3,” Phys. Status Solidi A 106, 89–98 (1988).
  21. R. Sommerfeldt, L. Holtmann, and E. Kratzig, “The light-induced charge transport in LiNbO3:Mg, Fe crystals,” Ferroelectrics 92, 219–225 (1989).
  22. M. Simon, F. Jermann, T. R. Volk, and E. Kratzig, “Influence of zinc doping on the photorefractive properties of lithium niobate,” Phys. Status Solidi A 149, 723–733 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited