OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 16, Iss. 6 — Jun. 1, 1999
  • pp: 932–951

Self-pulsing and dynamic bistability in cw-pumped Brillouin fiber ring lasers

Carlos Montes, Derradji Bahloul, Isabelle Bongrand, Jean Botineau, Gérard Cheval, Abdellatif Mamhoud, Eric Picholle, and Antonio Picozzi  »View Author Affiliations


JOSA B, Vol. 16, Issue 6, pp. 932-951 (1999)
http://dx.doi.org/10.1364/JOSAB.16.000932


View Full Text Article

Enhanced HTML    Acrobat PDF (1032 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The nonlinear dynamics of cw-pumped Brillouin long-fiber ring lasers that contain a large number of longitudinal modes N beneath the Brillouin gain curve is controlled by a single parameter, namely, the Stokes feedback R. Below Rcrit, a stable train of dissipative solitonic pulses is spontaneously structured at the round-trip frequency fr without any additional intracavity mode locking. Experimental observations in cw-pumped fiber ring cavities, supported by numerical simulation in a coherent space–time three-wave model that includes the optical Kerr effect, prove the universality of the self-pulsing mechanism. Stability analysis shows that below Rcrit the steady Brillouin mirror regime is destabilized through a Hopf bifurcation. For R<Rcrit<R0 the bifurcation is supercritical and exhibits an asymptotically monostable oscillatory regime at twice fr for high enough N or at fr for lower N, in a finite transition region. For R0<R<Rcrit, the bifurcation is subcritical and exhibits dynamic bistability between the steady and the pulsed regimes in a finite hysteresis region whose width is proportional to the Kerr parameter. For R small enough, the cavity longitudinal modes merge into a dissipative solitonic Brillouin pulse: the dynamic three-wave model yields self-structured asymptotically stable trains of pulses for any initial conditions, in fair quantitative agreement (for pulse width, intensity, shape, and period) with the experiments in the entire self-pulsing domain. Amplification of spontaneous emission breaks down the stable-pulse regime in long devices (i.e., high N), so the fiber noise amplitude is higher than the coherent amplitude that separates two consecutive pulses.

© 1999 Optical Society of America

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(140.3560) Lasers and laser optics : Lasers, ring
(190.1450) Nonlinear optics : Bistability
(290.5900) Scattering : Scattering, stimulated Brillouin

Citation
Carlos Montes, Derradji Bahloul, Isabelle Bongrand, Jean Botineau, Gérard Cheval, Abdellatif Mamhoud, Eric Picholle, and Antonio Picozzi, "Self-pulsing and dynamic bistability in cw-pumped Brillouin fiber ring lasers," J. Opt. Soc. Am. B 16, 932-951 (1999)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-16-6-932


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. Bar-Joseph, A. A. Friesem, E. Lichtman, and R. G. Waarts, “Steady and relaxation oscillations of SBS in single-mode optical fibers,” J. Opt. Soc. Am. B 2, 1606–1611 (1986). [CrossRef]
  2. R. G. Harrison, J. S. Uppal, A. Johnstone, and J. V. Moloney, “Evidence of chaotic stimulated Brillouin scattering with weak feedback,” Phys. Rev. Lett. 65, 167–170 (1990). [CrossRef] [PubMed]
  3. A. L. Gaeta and R. W. Boyd, “Stimulated Brillouin scattering in the presence of external feedback,” J. Nonlinear Opt. Phys. Mater. 1, 581–594 (1992). [CrossRef]
  4. M. Dämmig, G. Zinner, F. Mitschke, and H. Welling, “Stimulated Brillouin scattering in fibers with and without external feedback,” Phys. Rev. A 48, 3301–3309 (1993). [CrossRef] [PubMed]
  5. K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “cw Brillouin laser,” Appl. Phys. 28, 608–609 (1976).
  6. S. P. Smith, F. Zarinetchi, and S. E. Ezekiel, “Narrow-linewidth stimulated Brillouin fiber laser and applications,” Opt. Lett. 16, 393–395 (1991). [CrossRef] [PubMed]
  7. L. F. Stokes, M. Chodorow, and H. J. Shaw, “All-fiber stimulated Brillouin ring laser with submilliwatt pump threshold,” Opt. Lett. 7, 509–511 (1982). [CrossRef] [PubMed]
  8. P. Bayvel and I. P. Giles, “Evaluation of performance parameters of single-mode all-fiber Brillouin ring lasers,” Opt. Lett. 14, 581–583 (1989). [CrossRef] [PubMed]
  9. P. J. Thomas, H. M. van Driel, and G. I. A. Stegeman, “Possibility of using an optical fiber Brillouin ring laser for inertial sensing,” Appl. Opt. 19, 1906–1908 (1980). [CrossRef] [PubMed]
  10. D. R. Ponikvar and S. Ezekiel, “Stabilized single-frequency stimulated Brillouin fiber ring laser,” Opt. Lett. 8, 398–400 (1981). [CrossRef]
  11. J. Botineau, C. Leycuras, C. Montes, and E. Picholle, “Stabilization of a stimulated Brillouin fiber ring laser by strong pump modulation,” J. Opt. Soc. Am. B 6, 300–312 (1989). [CrossRef]
  12. E. Picholle, C. Montes, C. Leycuras, O. Legrand, and J. Botineau, “Observation of dissipative superluminous solitons in a Brillouin fiber ring laser,” Phys. Rev. Lett. 66, 1454–1457 (1991). [CrossRef] [PubMed]
  13. S. Randoux, V. Lecoeuche, B. Ségard, and J. Zemmouri, “Dynamical analysis of Brillouin fiber lasers: an experimental approach,” Phys. Rev. A 51, R4345–R4348 (1995). [CrossRef] [PubMed]
  14. C. Montes, A. Mamhoud, and E. Picholle, “Bifurcation in a cw-pumped Brillouin fiber-ring laser: coherent soliton morphogenesis,” Phys. Rev. A 49, 1344–1349 (1994). [CrossRef] [PubMed]
  15. Y. Takushima and K. Kikuchi, “Spectral gain hole burning and modulation instability in a Brillouin fiber amplifier,” Opt. Lett. 20, 34–36 (1995). [CrossRef] [PubMed]
  16. V. Lecoeuche, B. Ségard, and J. Zemmouri, “Modes of destabilization of Brillouin fiber ring lasers,” Opt. Commun. 134, 547–558 (1997). [CrossRef]
  17. C. Montes and J. Coste, “Optical turbulence in multiple stimulated Brillouin backscattering,” Laser Part. Beams 5, 405–411 (1987). [CrossRef]
  18. S. Randoux, V. Lecoeuche, B. Ségard, and J. Zemmouri, “Dynamical behavior of Brillouin fiber ring laser emitting two Stokes components,” Phys. Rev. A 52, 221–228 (1995). [CrossRef]
  19. C. Montes, A. Mamhoud, and E. Picholle, “Hopf bifurcation in cw-pumped fiber resonators: generation of stimulated Brillouin solitons,” in Nonlinear Coherent Structures in Physics and Biology, K. H. Spatschek and F. G. Mertens, eds. (Plenum, New York, 1994), pp. 357–363.
  20. J. Pelous and R. Vacher, “Thermal Brillouin scattering measurements of the attenuation of longitudinal hypersounds in fused quartz from 77 to 300 K,” Solid State Commun. 16, 279–283 (1975). [CrossRef]
  21. D. Heiman, D. S. Hamilton, and R. W. Hellwarth, “Brillouin scattering measurements on optical glasses,” Phys. Rev. B 19, 6583–6592 (1979). [CrossRef]
  22. B. Ya Zel’dovich and A. N. Pilipetskii, “Role of a soundguide and antisoundguide in stimulated Brillouin scattering in a single-mode waveguide,” Sov. J. Quantum Electron. 183, 818–822 (1988). [CrossRef]
  23. C. K. Jen, J. E. B. Oliveira, N. Goto, and K. Abe, “Role of guided acoustic wave properties in single-mode optical fibre design,” Electron. Lett. 24, 1419–1420 (1988). [CrossRef]
  24. E. Picholle and A. Picozzi, “Guided-acoustic-wave resonances in the dynamics of stimulated Brillouin fiber ring laser,” Opt. Commun. 18, 327–330 (1997). [CrossRef]
  25. D. Cotter, “Stimulated Brillouin scattering in monomode optical fiber,” J. Opt. Commun. 4, 10–19 (1983). [CrossRef]
  26. M. O. van Deventer and A. I. Root, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12, 585–590 (1994). [CrossRef]
  27. J. Botineau, E. Picholle, and D. Bahloul, “Effective stimulated Brillouin gain in singlemode optical fibers,” Electron. Lett. 23, 2032–2033 (1995). [CrossRef]
  28. N. Yoshisawa, T. Harigushi, and T. Kuroshima, “Proposal for stimulated Brillouin scattering suppression by fiber cabling,” Electron. Lett. 27, 1100–1101 (1991). [CrossRef]
  29. M. Niklès, “La diffusion Brillouin dans les fibres optiques: Etude et application aux capteurs distribués,” thèse de doctorat (Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 1997).
  30. A comparison round-robin was organized in 1996 by L. Thévenaz (Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland) and F. Ravet (FPMs, Mons, Belgium) in the European program COST 241, to compare and evaluate the measurement procedures of several SBS parameters in fibers.
  31. A. Küng, “L’émission laser par diffusion Brillouin stimulée dans les fibres optiques,” thèse de doctorat (Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 1997).
  32. R. W. Boyd and K. Rzażewsky, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990). [CrossRef] [PubMed]
  33. J. Botineau, C. Leycuras, C. Montes, and E. Picholle, “Co-herent modal analysis of a Brillouin fiber ring laser,” Opt. Commun. 15, 126–132 (1994). [CrossRef]
  34. W. Lu and R. G. Harrison, “Nonlinear dynamical and chaotic features in stimulated scattering phenomena,” Europhys. Lett. 16, 655–660 (1991); W. Lu, A. Johnstone, and R. G. Harrison, “Deterministic dynamics of stimulated scattering phenomena with external feedback,” Phys. Rev. A 46, 4114–4122 (1992); R. G. Harrison, P. M. Ripley, and W. Lu, “Observation and characterization of deterministic chaos in stimulated Brillouin scattering with weak feedback,” Phys. Rev. A PLRAAN 49, R24–R27 (1994). [CrossRef] [PubMed]
  35. D. Yu, W. Lu, and R. G. Harrison, “Physical origin of dynamical stimulated Brillouin scattering in optical fibers with feedback,” Phys. Rev. A 51, 669–674 (1995). [CrossRef] [PubMed]
  36. A. Mamhoud, “Soliton morphogenesis in a cw-pumped Brillouin fiber-laser,” thèse de doctorat (Université de Nice—Sophia Antipolis, Nice, France, 1996).
  37. A. Picozzi, C. Montes, J. Botineau, and E. Picholle, “Inertial model for stimulated Raman scattering inducing chaotic dynamics,” J. Opt. Soc. Am. B 15, 1309–1314 (1998); A. Picozzi, C. Montes, and E. Picholle, “Fast solitary waves against slow inertial instability in stimulated Raman scattering,” Phys. Rev. E 58, 2548–2557 (1998). [CrossRef]
  38. C. Montes and O. Legrand, “Nonstationary stimulated Brillouin backscattering,” in Electromagnetic and Acoustic Scattering: Detection and Inverse Problems, C. Bourrely, P. Chiappetta, and B. Torresani, eds. (World Scientific, Singapore, 1989), pp. 209–221; O. Legrand and C. Montes, “Apparent superluminous quasi-solitons in stimulated Brillouin backscattering,” J. Phys. Colloq. 50, C3–147–155 (1989). [CrossRef]
  39. S. F. Morosov, L. V. Piskunova, M. M. Sushik, and G. I. Freidman, “Formation and amplification of quasisoliton pulses in head-on stimulated scattering,” Sov. J. Quantum Electron. 8, 576–580 (1978). [CrossRef]
  40. J. Coste and C. Montes, “Asymtotic evolution of stimulated Brillouin scattering: implications for optical fibers,” Phys. Rev. A 34, 3940–3949 (1986). [CrossRef] [PubMed]
  41. C. Montes, A. Picozzi, and D. Bahloul, “Dissipative three-wave structures in stimulated backscattering. II. Superluminous and subluminous solitons,” Phys. Rev. E 55, 1092–1105 (1997). [CrossRef]
  42. H. M. Gibbs, Optical Bistability: Controlling Light by Light (Academic, New York, 1985).
  43. R. W. Boyd, Nonlinear Optics (Academic, New York, 1992), pp. 263–269.
  44. A. Hasegawa and Y. Kodama, “Guiding-center soliton in optical fibers,” Opt. Lett. 15, 1443–1445 (1990). [CrossRef] [PubMed]
  45. D. J. Kaup, “The first-order perturbed SBS equations,” J. Nonlinear Sci. 3, 427–443 (1993). [CrossRef]
  46. L. Chen and X. Bao, “Analytic and numerical solutions for the steady state stimulated Brillouin scattering in a single-mode fiber,” Opt. Commun. 152, 65–70 (1998). [CrossRef]
  47. The study of the detuned cavity in the bifurcation region was suggested to us by a referee.
  48. R. M. Shelby, M. D. Levenson, and S. H. Perlmutter, “Bistability and other effects in a nonlinear fiber-optic ring resonator,” J. Opt. Soc. Am. B 5, 347–357 (1988). [CrossRef]
  49. A. Fellegara, A. Melloni, and M. Martinelli, “Measurement of the frequency response induced by electrostriction in optical fibers,” Opt. Lett. 22, 1615–1617 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited