OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 16, Iss. 8 — Aug. 1, 1999
  • pp: 1197–1203

Multichannel switchable system for spatial solitons

Boris A. Malomed, Z. H. Wang, P. L. Chu, and G. D. Peng  »View Author Affiliations

JOSA B, Vol. 16, Issue 8, pp. 1197-1203 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (164 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We consider a model of a nonlinear planar waveguide with a sinusoidal modulation of the refractive index in the transverse direction, which gives rise to a system of parallel troughs that may serve as channels that trap solitary beams (spatial solitons). The model can also be considered as an asymptotic one describing a dense planar array of parallel nonlinear optical fibers, with the modulation representing the corresponding effective Peierls–Nabarro potential. By means of the variational approximation and by direct simulations we demonstrate that the one-soliton state trapped in a channel has no existence threshold and is always stable. In contrast with this a stationary state of two beams trapped in two adjacent troughs has an existence border, which is found numerically. Depending on the values of the parameters, the two-soliton states are found to be dynamically stable over an indefinitely long or a finite but large distance. We consider the possibility of switching the beam from a channel where it was trapped into an adjacent one by a localized spot attracting the beam through the cross-phase modulation. The spot can be created between the troughs by a focused laser beam shone transversely to the waveguide. By means of the perturbation theory and numerical method we demonstrate that the switching is possible, provided that the spot’s strength exceeds a certain threshold value.

© 1999 Optical Society of America

OCIS Codes
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(230.4320) Optical devices : Nonlinear optical devices

Boris A. Malomed, Z. H. Wang, P. L. Chu, and G. D. Peng, "Multichannel switchable system for spatial solitons," J. Opt. Soc. Am. B 16, 1197-1203 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Maneuf and F. Reynaud, “Quasi-steady-state self-trapping of first, second, and third order sub-nanosecond soliton beams,” Opt. Commun. 65, 325–328 (1988); J. S. Aitchison, A. M. Weiner, Y. Silberberg, M. K. Oliver, J. L. Jackel, D. E. Leaird, E. M. Vogel, and P. W. E. Smith, “Observation of spatial optical solitons in a nonlinear glass waveguide,” Opt. Lett. 15, 471–473 (1990). [CrossRef] [PubMed]
  2. A. Barthelemy, S. Maneuf, and C. Froehly, “Propagation soliton et. auto-confinement de Faisceasux laser par non linearte optique de Kerr,” Opt. Commun. 55, 201–206 (1985); S. Maneuf, R. Desailly, and C. Froehly, “Stable self-trapping of laser beams: observation in a nonlinear plasma waveguide,” Opt. Commun. 65, 193–198 (1988). [CrossRef]
  3. H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998). [CrossRef]
  4. Q. Y. Li, C. Pask, and R. A. Sammut, “Simple model for spa-tial optical solitons in planar waveguides,” Opt. Lett. 16, 1083–1085 (1991). [CrossRef] [PubMed]
  5. A. W. Snyder and A. P. Sheppard, “Collision, steering, and guidance with spatial solitons,” Opt. Lett. 18, 482–484 (1993). [CrossRef] [PubMed]
  6. F. Reynaud and A. Barthelemy, “Optically controlled interaction between two fundamental soliton beams,” Europhys. Lett. 12, 401–405 (1990); J. S. Aitchison, A. M. Weiner, Y. Silberberg, D. E. Leaird, M. K. Oliver, J. L. Jackel, and P. W. E. Smith, “Experimental observation of spatial optical soliton interactions,” Opt. Lett. 16, 15–17 (1991). [CrossRef] [PubMed]
  7. M. Shalaby and A. Barthelemy, “Experimental spatial soliton trapping and switching,” Opt. Lett. 16, 1472–1474 (1991). [CrossRef] [PubMed]
  8. S. Fan, P. R. Villeuneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop filters in photonic crystals,” Opt. Express 3, 4–7 (1998). [CrossRef] [PubMed]
  9. A. V. Buryak and Yu. S. Kivshar, “Solitons due to second harmonic generation,” Phys. Lett. A 197, 407–412 (1995); V. V. Afanasjev, P. L. Chu, and Yu. S. Kivshar, “Breathing spatial solitons in non-Kerr media,” Opt. Lett. 22, 1388–1390 (1997); C. B. Clausen, O. Bang, and Yu. S. Kivshar, “Spatial solitons and induced Kerr effects in quasi-phase-matched quadratic media,” Phys. Rev. Lett. PRLTAO 78, 4749–4752 (1997). [CrossRef]
  10. B. Crosignani, M. Segev, D. Engin, P. Di Porto, A. Yariv, and G. Salamo, “Self-trapping of optical beams in photorefractive media,” J. Opt. Soc. Am. B 10, 446–453 (1993); Z. Chen, M. Segev, T. H. Goskun, and D. N. Christodoulides, “Observation of incoherently coupled photorefractive spatial soliton pairs,” Opt. Lett. 21, 1436–1437 (1996); D. N. Christodoulides, T. H. Goskun, M. Mitchell, and M. Segev, “Theory of incoherent focusing in biased photorefractive media,” Phys. Rev. Lett. PRLTAO 78, 646–649 (1997); W. Królikowski, M. Saffman, B. Luther-Davies, and C. Denz, “Anomalous interaction of spatial solitons in photorefractive media,” Phys. Rev. Lett. PRLTAO 80, 3240–3243 (1998). [CrossRef] [PubMed]
  11. A. Hasegawa and Y. Kodama, Solitons in Optical Communications (Oxford U. Press, Oxford, UK, 1995).
  12. Y. S. Kivshar and D. K. Campbell, “Peierls–Nabarro potential barrier for highly localized nonlinear modes,” Phys. Rev. E 48, 3077–3081 (1993). [CrossRef]
  13. A. Shipulin, G. Onishchukov, and B. Malomed, “Suppression of soliton jitter by a copropagating support structure,” J. Opt. Soc. Am. B 14, 3393–3402 (1997). [CrossRef]
  14. M. G. Vakhitov and A. A. Kolokolov, “Stationary solutions of wave equation in the media with nonlinearity saturation,” Radiophys. Quantum Electron. 16, 783–785 (1973). [CrossRef]
  15. Yu. S. Kivshar and B. A. Malomed, “Dynamics of solitons in nearly integrable systems,” Rev. Mod. Phys. 61, 763–915 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited