OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 16, Iss. 8 — Aug. 1, 1999
  • pp: 1224–1235

Chemical lasing in pendant droplets: lasing-spectra, emission-pattern, and cavity-lifetime measurements

Seongsik Chang, Nathan B. Rex, and Richard K. Chang  »View Author Affiliations

JOSA B, Vol. 16, Issue 8, pp. 1224-1235 (1999)

View Full Text Article

Acrobat PDF (468 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate lasing in liquid pendant droplets through a chemiluminescence process, which uniquely provides spatially uniform pumping throughout the sample. Pendant droplets of 2-mm equatorial radius are formed at the tip of a capillary tube through which the chemiluminescence material is injected. The chemiluminescence spectra along the highlighted rim of the droplet show redshifted intensity enhancement in the wavelength region where the absorption is low. The lasing threshold is found by addition of different amounts of absorbers. The observed nonuniform laser-emission intensity distribution along the droplet rim is caused by a spatially varying rate of diffractive-light leakage related to the droplet surface curvature. Using WKB approximation, we express the diffractive-light leakage rate on a curved surface as an exponentially decreasing function of angle of incidence. The standard laser rate equation with distributed leakage loss is employed to express the laser-emission output intensity from the pendant droplet. The light leakage from the surface was further investigated by localized perturbations formed by poking of the surface with a sharply tipped fiber. The <i>Q</i> of cavity modes as high as 3.5×10<sup>8</sup> in the pendant droplet was determined from the cavity-lifetime measurement.

© 1999 Optical Society of America

OCIS Codes
(020.5580) Atomic and molecular physics : Quantum electrodynamics
(140.1550) Lasers and laser optics : Chemical lasers
(140.3410) Lasers and laser optics : Laser resonators
(190.3970) Nonlinear optics : Microparticle nonlinear optics
(190.5650) Nonlinear optics : Raman effect
(190.5890) Nonlinear optics : Scattering, stimulated

Seongsik Chang, Nathan B. Rex, and Richard K. Chang, "Chemical lasing in pendant droplets: lasing-spectra, emission-pattern, and cavity-lifetime measurements," J. Opt. Soc. Am. B 16, 1224-1235 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
  2. R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, “Threshold characteristics of semiconductor microdisk lasers,” Appl. Phys. Lett. 63, 1310–1312 (1993).
  3. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photonics Technol. Lett. 10, 549–551 (1998).
  4. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
  5. H. Mabuchi and H. J. Kimble, “Atom galleries for whispering atoms: binding atoms in stable orbits around an optical resonator,” Opt. Lett. 19, 749–751 (1994).
  6. L. Collot, V. Lefevre-Seguine, M. Brune, J. M. Raimonde, and S. Haroche, “Very high-Q whispering-gallery resonances observed on fused-silica microspheres,” Europhys. Lett. 23, 327–334 (1993).
  7. J. U. Nöckel and A. D. Stone, “Ray and wave chaos in asymmetric resonant cavities,” Nature (London) 385, 45–47 (1997).
  8. J. U. Nöckel, A. D. Stone, G. Chen, H. Grossman, and R. K. Chang, “Directional emission from asymmetric resonant cavities,” Opt. Lett. 21, 1609–1611 (1996).
  9. C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).
  10. A. Mekis, J. U. Nöckel, G. Chen, A. D. Stone, and R. K. Chang, “Ray chaos and Q-spoiling in lasing droplets,” Phys. Rev. Lett. 75, 2682–2685 (1995).
  11. Seongsik Chang, “Lasing characteristics of deformed microcavities,” Ph.D. dissertation (Yale University, New Haven, Conn., 1998).
  12. S.-X. Qian, J. B. Snow, H.-M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid–air interface by laser emission,” Science 231, 486–488 (1986).
  13. A. G. Mohan and N. J. Turro, “A facile and effective chemiluminescence demonstration experiment,” J. Chem. Educ. 51, 528–529 (1974).
  14. M. E. Knotts, “Fun with lightsticks,” Opt. Photon. News 7(1), 40 (1996).
  15. A. K. Campbell, Chemiluminescence: Principles and Applications in Biology and Medicine (Ellis Horwood, Chichester, England, 1988).
  16. J. M. Hartings, A. Poon, X. Pu, R. K. Chang, and T. M. Leslie, “Second harmonic generation and fluorescence images from surfactants on hanging droplets,” Chem. Phys. Lett. 281, 389–393 (1997).
  17. I. B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules, 2nd ed. (Academic, New York, 1971).
  18. B. R. Johnson, “Theory of morphology-dependent resonances: shape resonances and width formulas,” J. Opt. Soc. Am. A 10, 343–352 (1993).
  19. P. W. Barber and R. K. Chang, eds., Optical Effects Associated with Small Particles (World Scientific, Singapore, 1988).
  20. P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).
  21. H. M. Nussenzveig, “Tunneling effects in diffractive scattering and resonances,” Comments At. Mol. Phys. 23, 175–187 (1989).
  22. S. Gasiorowicz, Quantum Physics (Wiley, New York, 1974).
  23. J. U. Nöckel, “Resonances in nonintegrable open systems,”Ph.D. dissertation (Yale University, New Haven, Conn., 1997).
  24. A. E. Siegman, Lasers (University Science, Sausalito, Calif., 1986).
  25. F. P. Schäfer, eds., Dye Lasers, Vol. 1 of Topics in Applied Physics (Springer-Verlag, New York, 1977).
  26. P. Chýlek, H.-B. Lin, J. D. Eversole, and A. J. Campillo, “Absorption effects on microdroplet resonant emission structure,” Opt. Lett. 16, 1723–1725 (1991).
  27. J. C. Swindal, D. H. Leach, R. K. Chang, and K. Young, “Precession of morphology-dependent resonances in non-spherical droplets,” Opt. Lett. 18, 191–193 (1993).
  28. J. M. Hartings, J. L. Cheung, and R. K. Chang, “Temporal beating of nondegenerate azimuthal modes in nonspherical microdroplets: technique for determining the distortion amplitude,” Appl. Opt. 37, 3306–3310 (1998).
  29. K. Hakuta, “Stimulated Raman scattering in solid hydrogen,” presented at Conference on Lasers and Electro-Optics/International Quantum Electronics Conference (CLEO/IQEC), San Francisco, Calif., May 3–8, 1998, paper QFH1.
  30. J.-Z. Zhang, G. Chen, and R. K. Chang, “Pumping of stimulated Raman scattering by stimulated Brillouin scattering within a single droplet: input laser linewidth effects,” J. Opt. Soc. Am. B 7, 108–115 (1990).
  31. G. Chen, W. P. Acker, R. K. Chang, and S. C. Hill, “Fine structures in the angular distribution of stimulated Raman scattering from single droplets,” Opt. Lett. 16, 177–179 (1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited