OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 16, Iss. 9 — Sep. 1, 1999
  • pp: 1392–1397

Nonvolatile holographic storage in photorefractive lithium tantalate crystals with laser pulses

J. Imbrock, S. Wevering, K. Buse, and E. Krätzig  »View Author Affiliations


JOSA B, Vol. 16, Issue 9, pp. 1392-1397 (1999)
http://dx.doi.org/10.1364/JOSAB.16.001392


View Full Text Article

Enhanced HTML    Acrobat PDF (144 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nonvolatile holograms are recorded in photorefractive LiTaO3:Fe with laser pulses by use of two-step excitation. Ultraviolet laser pulses (wavelength λ=355 nm) yield a strong increase of absorption (as much as 600 m-1 at λ=633 nm) and sensitize the crystals for subsequent infrared (λ=1064 nm) holographic recording. Refractive-index changes of as much as 1.6×10-4 are achieved for intensities of the infrared light of 1011 W/m2. The saturation values are proportional to the concentration of Fe3+ ions. Nondestructive readout with infrared light is possible, and the holograms remain erasable for ultraviolet light. Typical time constants of recording and erasure are 0.5 µs for intensities of the ultraviolet light of 1011 W/m2. The results can be explained with a two-level charge-transport model.

© 1999 Optical Society of America

OCIS Codes
(090.2900) Holography : Optical storage materials
(160.5320) Materials : Photorefractive materials
(210.4810) Optical data storage : Optical storage-recording materials

Citation
J. Imbrock, S. Wevering, K. Buse, and E. Krätzig, "Nonvolatile holographic storage in photorefractive lithium tantalate crystals with laser pulses," J. Opt. Soc. Am. B 16, 1392-1397 (1999)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-16-9-1392


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Günter and J.-P. Huignard, eds., Photorefractive Materials and Their Applications I and II, Topics in Applied Physics (Springer-Verlag, Heidelberg, 1988 and 1989), Vols. 61 and 62.
  2. S. Breer, H. Vogt, I. Nee, and K. Buse, “Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate,” Electron. Lett. 34, 2418–2421 (1998). [CrossRef]
  3. E. Krätzig and R. Orlowski, “Light-induced charge transport in doped LiNbO3 and LiTaO3,” Ferroelectrics 27, 241–244 (1980). [CrossRef]
  4. G. E. Peterson, A. M. Glass, and T. J. Negran, “Control of the susceptibility of lithium niobate to laser-induced refractive index change,” Appl. Phys. Lett. 19, 130–132 (1971). [CrossRef]
  5. W. Phillips and D. L. Staebler, “Control of the Fe2+ concentration in iron-doped lithium niobate,” J. Electron. Mater. 3, 601–617 (1974). [CrossRef]
  6. D. von der Linde, A. M. Glass, and K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974). [CrossRef]
  7. H. Vormann and E. Krätzig, “Two step excitation in LiTaO3:Fe for optical data storage,” Solid State Commun. 49, 843–847 (1984). [CrossRef]
  8. K. Buse, F. Jermann, and E. Krätzig, “Infrared holographic recording in LiNbO3:Cu,” Appl. Phys. A: Solids Surf. 58, 191–195 (1994). [CrossRef]
  9. F. Jermann and J. Otten, “Light-induced charge transport in LiNbO3:Fe at high light intensities,” J. Opt. Soc. Am. B 10, 2085–2092 (1993). [CrossRef]
  10. E. Krätzig and R. Orlowski, “LiTaO3 as holographic storage material,” Appl. Phys. 15, 133–139 (1978). [CrossRef]
  11. J. Baquedano, M. Carrascosa, L. Arizmendi, and J. M. Cabrera, “Erasure kinetics and spectral dependence of the photorefractive effect in Fe:LiNbO3,” J. Opt. Soc. Am. B 4, 309–312 (1987). [CrossRef]
  12. L. A. Kappers, K. L. Sweeney, L. E. Halliburton, and J. H. W. Liaw, “Oxygen vacancies in lithium tantalate,” Phys. Rev. B 31, 6792–6794 (1985). [CrossRef]
  13. N. V. Kukhtarev, “Kinetics of hologram recording and erasure in electrooptic crystals,” Sov. Tech. Phys. Lett. 2, 438–440 (1976).
  14. K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature (London) 393, 665–668 (1998). [CrossRef]
  15. L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998). [CrossRef] [PubMed]
  16. K. H. Hellwege, ed. Landolt–Börnstein, Ferro- und Antiferromagnetische Substanzen (Springer-Verlag, 1975), Vol. III.
  17. H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited