OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 16, Iss. 9 — Sep. 1, 1999
  • pp: 1398–1402

Effects of structural fluctuations on the photonic bandgap during fabrication of a photonic crystal: a study of a photonic crystal with a finite number of periods

Alongkarn Chutinan and Susumu Noda  »View Author Affiliations


JOSA B, Vol. 16, Issue 9, pp. 1398-1402 (1999)
http://dx.doi.org/10.1364/JOSAB.16.001398


View Full Text Article

Acrobat PDF (161 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study theoretically the effects of structural fluctuations on the photonic bandgap during fabrication for the case of a photonic crystal with a finite number of periods. We use the transfer-matrix method to calculate the transmission spectra of the photonic crystals. The results of our calculations show that, even with a misalignment irregularity of 18%, the bandgap remains as large as 10%.

© 1999 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(120.7000) Instrumentation, measurement, and metrology : Transmission
(220.4000) Optical design and fabrication : Microstructure fabrication

Citation
Alongkarn Chutinan and Susumu Noda, "Effects of structural fluctuations on the photonic bandgap during fabrication of a photonic crystal: a study of a photonic crystal with a finite number of periods," J. Opt. Soc. Am. B 16, 1398-1402 (1999)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-16-9-1398


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
  3. S. John and J. Wang, “Quantum electrodynamics near a photonic bandgap: photon bound states and dressed atoms,” Phys. Rev. Lett. 64, 2418–2421 (1990).
  4. E. R. Brown, C. D. Parker, and E. Yablonovitch, “Radiation properties of a planar antenna on a photonic-crystal substrate,” J. Opt. Soc. Am. B 10, 404–407 (1993).
  5. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
  6. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
  7. K. M. Ho, C. T. Chan, C. M. Soukouslis, R. Biswas, and M. Sigalas, “Photonic bandgaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
  8. K. M. Leung, “Diamondlike photonic bandgap crystal with a sizable bandgap,” Phys. Rev. B 56, 3517–3519 (1997).
  9. E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic band structure: the face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett. 67, 2295–2298 (1991).
  10. H. S. Sözüer, J. W. Haus, and R. Inguva, “Photonic bands: convergence problems with the plane-wave method,” Phys. Rev. B 45, 13962–13972 (1992).
  11. R. M. Hornreich, S. Shtrikman, and C. Sommers, “Photonic bandgaps in body-centered-cubic structures,” Phys. Rev. B 49, 10914–10917 (1994).
  12. H. S. Sözüer and J. W. Haus, “Photonic bands: simple-cubic lattice,” J. Opt. Soc. Am. B 10, 296–302 (1993).
  13. S. Fan, P. R. Villeneuve, R. D. Meade, and J. D. Joannopoulos, “Design of three-dimensional photonic crystals at submicron lengthscales,” Appl. Phys. Lett. 65, 1466–1468 (1994).
  14. C. T. Chan, S. Datta, K. M. Ho, and C. M. Soukoulis, “A7 structure: a family of photonic crystals,” Phys. Rev. B 50, 1988–1991 (1994).
  15. A. Chutinan and S. Noda, “Spiral three-dimensional photonic-bandgap structure,” Phys. Rev. B 57, R2006–R2008 (1998).
  16. E. Yablonovitch, “Photonic band-gap structures,” J. Opt. Soc. Am. B 10, 283–295 (1993).
  17. E. Özbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, “Measurement of a three-dimensional photonic bandgap in a crystal structure made of dielectric rods,” Phys. Rev. B 50, 1945–1948 (1994).
  18. C. C. Cheng and A. Scherer, “Fabrication of photonic bandgap crystals,” J. Vac. Sci. Technol. B 13, 2696–2700 (1995).
  19. S. Noda, N. Yamamoto, and A. Sasaki, “New realization method for three-dimensional photonic crystal in optical wavelength region,” Jpn. J. Appl. Phys., Part 2 35, L909–L912 (1996).
  20. N. Yamamoto and S. Noda, “Development of a period of three-dimensional photonic crystal operating at optical wavelength region,” presented at the 10th International Conference on Indium Phosphide and Related Materials, Tsukuba, Japan, May 11–15, 1998.
  21. N. Yamamoto, S. Noda, and A. Chutinan, “Development of one period of three-dimensional photonic crystal in 5–10 μm wavelength region by wafer fusion and laser beam diffraction pattern observation techniques,” Jpn. J. Appl. Phys. 37, L1052–L1054 (1998).
  22. S. Noda, N. Yamamoto, M. Imada, H. Kobayashi, and M. Okano, “Alignment and stacking of semiconductor photonic band gaps by wafer-fusion,” presented at the Workshop on Electromagnetic Crystal Structures, Design, Synthesis, and Applications, Laguna Beach, Calif., January 6–8 (1999).
  23. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
  24. M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and D. Turner, “Localization of electromagnetic waves in two-dimensional disordered systems,” Phys. Rev. B 53, 8340–8348 (1996).
  25. M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and K. M. Ho, “Photonic band gap structures: studies of the transmission coefficient,” in Photonic Band Gap Materials, C. M. Soukoulis, ed., Vol. 315 of NATO Advanced Study Institute Series E: Applied Sciences (Academic, New York, 1996), pp. 173–202.
  26. M. M. Sigalas, K. M. Ho, R. Biswas, and C. M. Soukoulis, “Theoretical investigation of defects in photonic crystals in the presence of dielectric losses,” Phys. Rev. B 57, 3815–3820 (1998).
  27. S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Theoretical investigation of fabrication-related disorder on the properties of photonic crystals,” J. Appl. Phys. 78, 1415–1418 (1995).
  28. A. Chutinan and S. Noda, “Effect of structural fluctuations on the photonic bandgap during the photonic crystal fabrication,” J. Opt. Soc. Am. B 16, 240–244 (1999).
  29. J. B. Pendry and A. MacKinnon, “Calculation of photon dispersion relations,” Phys. Rev. Lett. 69, 2772–2775 (1992).
  30. N. Yamamoto and S. Noda, “100-nm-scale alignment using laser beam diffraction pattern observation techniques and wafer fusion for realizing three-dimensional photonic crystal structure,” Jpn. J. Appl. Phys. 37, 3334–3338 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited