OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 16, Iss. 9 — Sep. 1, 1999
  • pp: 1409–1417

Dyadic formulation of morphology-dependent resonances. I. Completeness relation

K. M. Lee, P. T. Leung, and K. M. Pang  »View Author Affiliations

JOSA B, Vol. 16, Issue 9, pp. 1409-1417 (1999)

View Full Text Article

Acrobat PDF (165 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The magnetic (or electric) fields of morphology-dependent resonances of a dielectric sphere are shown to form an orthogonal complete set for expanding divergence-free vectorial functions inside the dielectric sphere, provided that there is a spatial discontinuity in its refractive index, say, at the edge of the sphere. A transverse projection dyad that picks up the divergence-free part (or its generalization) of a vector is defined and shown to be expandable in terms of the magnetic (or electric) fields of these morphology-dependent resonances. Moreover, the transverse dyadic Green’s function in these dielectric spheres is in turn expressed as a sum of tensor products of relevant morphology-dependent resonance fields. Each term in the sum manifests itself as a resonant response to external perturbations. Thus the morphology-dependent resonance expansion provides a powerful tool to analyze various optical phenomena in dielectric spheres.

© 1999 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.4430) General : Numerical approximation and analysis
(260.2110) Physical optics : Electromagnetic optics
(260.5740) Physical optics : Resonance
(290.0290) Scattering : Scattering
(290.4020) Scattering : Mie theory

K. M. Lee, P. T. Leung, and K. M. Pang, "Dyadic formulation of morphology-dependent resonances. I. Completeness relation," J. Opt. Soc. Am. B 16, 1409-1417 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. See, e.g., M. Kerker, ed., Selected Papers on Light Scattering, Proc. SPIE 951 (1988), and references therein.
  2. G. Mie, “Beitrage zur Optik truber Medien, speziell kolloidaler Metaalosungen,” Ann. Phys. (Leipzig) 25, 377–442 (1908).
  3. P. W. Barber and R. K. Chang, eds., Optical Effects Associated with Small Particles (World Scientific, Singapore, 1988).
  4. R. K. Chang and A. J. Campillo, eds., Optical Processes in Microcavities (World Scientific, Singapore, 1996).
  5. R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
  6. J. B. Snow, S.-X. Qian, and R. K. Chang, “Stimulated Raman scattering from individual water and ethanol droplets at morphology-dependent resonances,” Opt. Lett. 10, 37–39 (1985).
  7. J.-Z. Zhang and R. K. Chang, “Generation and suppression of stimulated Brillouin scattering in single liquid droplets,” J. Opt. Soc. Am. B 6, 151–153 (1989).
  8. H. M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, “Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances,” Opt. Lett. 9, 499–501 (1984).
  9. L. M. Folan, S. Arnold, and D. Druger, “Enhanced energy transfer within a microparticle,” Chem. Phys. Lett. 118, 322–327 (1985).
  10. See, e.g., P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).
  11. M. L. Goldberger and K. M. Watson, Collision Theory (Wiley, New York, 1964).
  12. E. S. C. Emily, P. T. Leung, A. Maassen van den Brink, W. M. Suen, S. S. Tong, and K. Young, “Quasinormal mode expansion for waves in open systems,” Rev. Mod. Phys. 70, 1545–1554 (1998).
  13. P. T. Leung and K. M. Pang, “Completeness and time-independent perturbation of morphology-dependent resonances in dielectric spheres,” J. Opt. Soc. Am. B 13, 805–817 (1996).
  14. K. M. Lee, P. T. Leung, and K. M. Pang, “Iterative perturbation scheme for morphology-dependent resonances in dielectric spheres,” J. Opt. Soc. Am. A 15, 1383–1393 (1998).
  15. C.-T. Tai, Dyadic Functions in Electromagnetic Theory, 2nd ed. (IEEE Press, New York, 1993).
  16. W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE Press, New York, 1995).
  17. A. Q. Howard, “On the longitudinal component of the Green’s functions in bounded media,” Proc. IEEE 62, 1704–1705 (1974); W. A. Johnson, A. Q. Howard, and D. G. Dudley, “On the irrotational component of the electric Green’s dyadic,” Radio Sci. 14, 961–967 (1979).
  18. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975).
  19. O. D. Kellogg, Foundations of Potential Theory (Dover, New York, 1953).
  20. In the present paper we consider the divergence-free term ∇×(4πj/ε) as the source of the magnetic field, whereas in the conventional treatment of the dyadic Green’s function of Maxwell equations15 the current j itself is used instead.
  21. K. M. Pang, “Completeness and perturbation of morphology-dependent resonances in dielectric spheres,” Ph.D. dissertation (Chinese University of Hong Kong, Hong Kong, 1999).
  22. K. C. Ho, “A study of field fluctuation in open optical cavities,” M. Phil. thesis (Chinese University of Hong Kong, Hong Kong, 1997).
  23. K. M. Lee, P. T. Leung, and K. M. Pang, “Dyadic formulation of morphology-dependent resonances. II. Perturbation theory,” J. Opt. Soc. Am. B 16, 1418–1430 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited