OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 16, Iss. 9 — Sep. 1, 1999
  • pp: 1455–1467

Enhancement in the spectral irradiance of photoconducting terahertz emitters by chirped-pulse mixing

Aniruddha S. Weling and Tony F. Heinz  »View Author Affiliations

JOSA B, Vol. 16, Issue 9, pp. 1455-1467 (1999)

View Full Text Article

Acrobat PDF (232 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe the use of mixing linearly chirped optical pulses in biased photoconductors to generate tunable narrow-band terahertz (THz) radiation with enhanced spectral brightness. The increase in conversion efficiency from optical to THz radiation at a given THz frequency arises from the improved saturation characteristics of the photoconductor for chirped-pulse mixing compared with the usual case of excitation by an ultrafast optical pulse. In the weak saturation limit, the enhancement in the saturation fluence scales with the ratio of the duration of the chirped optical pulse to the photocurrent relaxation time in the emitter and is essentially independent of the beat frequency generated by the chirped-pulse mixing technique. This dependence allows for substantial enhancements in the saturation fluence and, hence, in the THz spectral brightness. We demonstrate enhanced saturation fluences experimentally for dipole emitters fabricated on radiation-damaged Si on sapphire.

© 1999 Optical Society of America

OCIS Codes
(230.0250) Optical devices : Optoelectronics
(260.5150) Physical optics : Photoconductivity
(320.5540) Ultrafast optics : Pulse shaping
(320.7160) Ultrafast optics : Ultrafast technology

Aniruddha S. Weling and Tony F. Heinz, "Enhancement in the spectral irradiance of photoconducting terahertz emitters by chirped-pulse mixing," J. Opt. Soc. Am. B 16, 1455-1467 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24, 255 (1988).
  2. M. Van Exter and D. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684 (1990).
  3. B. B. Hu, X.-C. Zhang, and D. H. Auston, “Free space radiation from electro-optic crystals,” Appl. Phys. Lett. 56, 506 (1990).
  4. B. B. Hu, J. T. Darrow, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett. 56, 886 (1990).
  5. Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of THz beams,” Appl. Phys. Lett. 67, 3523 (1995); A. Nahata, D. H. Auston, T. F. Heinz, and C. Wu, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling in a poled polymer,” Appl. Phys. Lett. 68, 150 (1996); P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E PLEEE8 53, R3052 (1996).
  6. D. Grischkowsky, “Nonlinear generation of subpicosecond pulses of THz electromagnetic radiation by optoelectronics—applications to time-domain spectroscopy,” in Frontiers in Nonlinear Optics, H. Walther, N. Koroteev, and M. O. Scully, eds. (Institute of Physics, Philadelphia, Pa., 1993), pp. 196–227.
  7. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 1716 (1995); Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026 (1996).
  8. R. A. Cheville and D. R. Grischkowsky, “Time-domain terahertz impulse ranging studies,” Appl. Phys. Lett. 67, 1960 (1995).
  9. B. I. Greene, P. N. Saeta, D. R. Dykaar, S. Schmitt-Rink, and S. L. Chuang, “Far-infrared light generation at semiconductor surfaces and its spectroscopic applications,” IEEE J. Quantum Electron. 28, 2302 (1992).
  10. R. R. Jones, N. E. Tielking, D. You, C. Raman, and P. H. Bucksbaum, “Ionization of oriented Rydberg states by sub-picosecond half-cycle electromagnetic pulses,” Phys. Rev. A 51, R2687 (1995).
  11. D. You, R. R. Jones, P. H. Bucksbaum, and D. R. Dykaar, “Generation of high-power sub-single-cycle 500-fs electromagnetic pulses,” Opt. Lett. 18, 290 (1993); E. Budiarto, J. Margolies, S. Jeong, J. Son, and J. Bokor, “High-intensity terahertz pulses at 1-kHz repetition rate,” IEEE J. Quantum Electron. 32, 1839 (1996).
  12. J. T. Darrow, X.-C. Zhang, D. H. Auston, and J. D. Morse, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28, 1607 (1992).
  13. P. K. Benicewicz, J. P. Roberts, and A. J. Taylor, “Scaling of terahertz radiation from large-aperture biased photoconductors,” J. Opt. Soc. Am. B 11, 2533 (1994).
  14. A. Mayer and F. Keilmann, “Far-infrared nonlinear optics: I & II,” Phys. Rev. B 33, 6954 (1986).
  15. A. S. Weling and T. F. Heinz, “Photoconducting terahertz emitters with enhanced spectral brightness,” in Conference on Lasers and Electro-Optics, Vol. 11 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), paper CTuC7.
  16. A. S. Weling, B. B. Hu, N. M. Froberg, and D. H. Auston, “Generation of tunable narrowband THz radiation from large aperture photoconducting antennas,” Appl. Phys. Lett. 64, 137 (1994).
  17. Y. Liu, S.-G. Paek, and A. M. Weiner, “Enhancement of narrow-band terahertz radiation from photoconducting antennas by optical pulse shaping,” Opt. Lett. 21, 1762 (1996); Y. Liu, S.-G. Paek, and A. M. Weiner, “Terahertz waveform synthesis via optical pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 2, 709 (1996).
  18. A. S. Weling and D. H. Auston, “Novel sources and detectors for coherent tunable narrowband terahertz radiation in free space,” J. Opt. Soc. Am. B 13, 2783 (1996).
  19. See, for example, J. W. Goodman, Statistical Optics (Wiley, New York, 1985), Chap. 3.
  20. W. Sha, J.-K. Rhee, T. B. Norris, and W. J. Schaff, “Transient carrier and field dynamics in quantum-well parallel transport: from the ballistic to the quasi-equilibrium regime,” IEEE J. Quantum Electron. 28, 2445 (1992); T. Dekorsy, T. Pfeiffer, W. Kutt, and H. Kurz, “Subpicosecond carrier transport in GaAs surface-space-charge fields,” Phys. Rev. B 47, 3842 (1993).
  21. G. Rodriguez and A. J. Taylor, “Screening of the bias field in terahertz radiation from photoconductors,” Opt. Lett. 21, 1046 (1996).
  22. A. J. Taylor, P. K. Benicewicz, and S. M. Roberts, “Modeling of femtosecond electromagnetic pulses from large-aperture photoconductors,” Opt. Lett. 18, 1340 (1993).
  23. A. J. Taylor, G. Rodrigues, and D. Some, “Ultrafast field dynamics in large-aperture photoconductors,” Opt. Lett. 22, 715 (1997).
  24. F. Doany, D. Grischkowsky, and C.-C. Chi, “Carrier lifetime versus ion-implantation dose in silicon-on-sapphire,” Appl. Phys. Lett. 50, 460 (1987).
  25. J. E. Pedersen, V. G. Lyssenko, J. M. Hvam, P. Uhd Jepsen, S. R. Keiding, C. B. Sorensen, and P. E. Lindelof, “Ultrafast local field dynamics in photoconductive THz antennas,” Appl. Phys. Lett. 62, 1265 (1993).
  26. R. H. Jacobsen, K. Birkelund, T. Holst, P. Uhd Jepsen, and S. R. Keiding, “Interpretation of photocurrent correlation measurements used for ultrafast photoconductive switch characterization,” J. Appl. Phys. 79, 2649 (1996).
  27. A. Krotkus, S. Marcinkevicius, J. Jasinski, M. Kaminska, H. H. Tan, and C. Jagadish, “Picosecond carrier lifetime in GaAs implanted with high doses of As ions: an alternative material to low-temperature GaAs for optoelectronic applications,” Appl. Phys. Lett. 66, 3304 (1995); M. Lambsdorff, J. Kuhl, J. Rosenzweig, A. Axmann, and J. Schneider, “Subpicosecond carrier lifetimes in radiation-damaged GaAs,” Appl. Phys. Lett. 58, 1881 (1991).
  28. E. R. Brown, K. A. Macintosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited