OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 16, Iss. 9 — Sep. 1, 1999
  • pp: 1481–1498

Stability and frequency tuning of thermally loaded continuous-wave AgGaS2 optical parametric oscillators

A. Douillet, J.-J. Zondy, A. Yelisseyev, S. Lobanov, and L. Isaenko  »View Author Affiliations

JOSA B, Vol. 16, Issue 9, pp. 1481-1498 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (650 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze and investigate experimentally the output stability and the frequency tuning characteristics of weakly triply resonant silver gallium sulfide (AgGaS2) optical parametric oscillators. These oscillators are subject to thermally induced bistability and passive self-frequency-locking phenomena. The robust self-frequency-locking on a single-mode pair (thermal lock) originates from the material’s ability to correct external cavity-length perturbations, which would normally cause a mode hop, by increasing or decreasing the optical path length of the cavity through the thermo-optic effect triggered by the intracavity signal–idler power fluctuations. The Fourier frequency bandwidth of this passive servo is limited to ∼1 kHz by the thermal diffusion time constant, which is proportional to the ratio of the specific heat to the thermal conductivity Cp/Kc. A thermal feedback servo gain as high as 180 is obtained, owing to the large thermal figure of merit η=(dn/dT)/Kc of AgGaS2, leading to routine passive mode-hop-free operation for more than 30 min, without the need for an external cavity-length servo. Analysis of the stability range of the thermally loaded standing-wave resonator shows that thermal lensing is less critical for shorter doubly resonant optical parametric oscillator cavities employing shorter-curvature mirrors, in agreement with experimental observations. When a doubly resonant oscillator operates near the boundary of the power stability range a self-pulsing behavior is observed on a number of axial mode pairs. This self-pulsing is found to originate from the destabilization of a self-locked cw state, and the transition from self-pulsing to the stable self-frequency-locked state is found to be controlled by the pump frequency detuning. The passive stability allows the single-parameter frequency tuning to be studied. Under pure thermal lock operation the oscillators show a tendency to resist the pump frequency and temperature tuning processes. When an external cavity-length servo is implemented continuous tuning over 850 MHz, by means of the pump frequency tuning (Δνs/Δνp0.66), and over 100 MHz, by means of the crystal temperature (Δνs/ΔT250 MHz/°C), is obtained. These tuning ranges are in good agreement with calculations based on a cold doubly resonant oscillator.

© 1999 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.1450) Nonlinear optics : Bistability
(190.4870) Nonlinear optics : Photothermal effects
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers

A. Douillet, J.-J. Zondy, A. Yelisseyev, S. Lobanov, and L. Isaenko, "Stability and frequency tuning of thermally loaded continuous-wave AgGaS2 optical parametric oscillators," J. Opt. Soc. Am. B 16, 1481-1498 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. G. Smith, J. E. Geusic, H. J. Levinstein, J. J. Rubin, S. Singh, and L. G. Van Uitert, “Continuous optical parametric oscillation in Ba2NaNb3O15,” Appl. Phys. Lett. 12, 308–310 (1968). [CrossRef]
  2. D. Lee and N. C. Wong, “Tunable optical frequency division using a phase-locked optical parametric oscillator,” Opt. Lett. 17, 13–15 (1992). [CrossRef] [PubMed]
  3. T. Ikegami, S. Slyusarev, S. Ohshima, and E. Sakuma, “Accuracy of an optical parametric oscillator as an optical frequency divider,” Opt. Commun. 127, 69–72 (1996). [CrossRef]
  4. G. M. Gibson, M. H. Dunn, and M. J. Padgett, “Application of a continuously tunable, cw optical parametric oscillator for high-resolution spectroscopy,” Opt. Lett. 23, 40–42 (1998). [CrossRef]
  5. G. M. Gibson, M. Ebrahimzadeh, M. Padgett, and M. H. Dunn, “Continuous-wave optical parametric oscillator based on periodically poled KTiOPO4 and its application to spectroscopy,” Opt. Lett. 24, 397–399 (1999). [CrossRef]
  6. D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Biraben, and F. Nez, “Frequency measurement of the 5S1/2(F=3)–5D5/2(F=5) two-photon transition in rubidium,” Opt. Commun. 133, 471–478 (1997). [CrossRef]
  7. E. J. Mason and N. C. Wong, “Observation of two distinct phase states in a self-phase-locked type II phase-matched optical parametric oscillator,” Opt. Lett. 23, 1733–1735 (1998). [CrossRef]
  8. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995). [CrossRef]
  9. J.-J. Zondy and D. Touahri, “Updated thermo-optic coefficients of AgGaS2 from temperature-tuned noncritical 3ω− ω→2ω infrared parametric amplification,” J. Opt. Soc. Am. B 14, 1331–1338 (1997). [CrossRef]
  10. K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, “Detection of methane in air using diode-laser pumped difference-frequency generation near 3.2 μm,” Appl. Phys. B 61, 553–558 (1995). [CrossRef]
  11. J.-J. Zondy, D. Touahri, and O. Acef, “Absolute value of the d36 nonlinear coefficient of AgGaS2: prospect for a low-threshold doubly resonant oscillator-based 3:1 frequency divider,” J. Opt. Soc. Am. B 14, 2481–2497 (1997). [CrossRef]
  12. P. Canarelli, Z. Benko, A. H. Hielscher, R. F. Curl, and F. K. Tittel, “Measurement of nonlinear coefficient and phase matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 28, 52–55 (1992). [CrossRef]
  13. R. S. Feigelson and R. K. Route, “Recent developments in the growth of chalcopyrite crystals for nonlinear infrared applications,” Opt. Eng. 26, 113–119 (1987). [CrossRef]
  14. G. C. Catella, Cleveland Crystals, Inc., Cleveland, Ohio 44110 (personal communication, 1996).
  15. J.-J. Zondy, A. Douillet, A. Yelisseyev, S. Lobanov, and L. Isaenko, “Pure and ytterbium-doped AgGaS2 potential for cw parametric oscillation and stimulated emission in the near-infrared,” presented at the 18th International Commission for Optics Meeting (ICO-XVIII), San Francisco, Calif., August 2–6, 1999.
  16. A. Douillet and J.-J. Zondy, “Low-threshold, self-frequency-stabilized AgGaS2 continuous-wave subharmonic optical parametric oscillator,” Opt. Lett. 23, 1259–1261 (1998). [CrossRef]
  17. J. D. Beasley, “Thermal conductivities of some novel nonlinear optical materials,” Appl. Opt. 33, 1000–1003 (1994). [CrossRef] [PubMed]
  18. A. J. Henderson, M. J. Padgett, F. G. Colville, J. Zhang, and M. H. Dunn, “Doubly-resonant optical parametric oscillators: tuning behaviour and stability requirements,” Opt. Commun. 119, 256–264 (1995). [CrossRef]
  19. P. L. Hansen and P. Buchhave, “Thermal self-frequency locking of a doubly resonant optical parametric oscillator,” Opt. Lett. 22, 1074–1076 (1997). [CrossRef] [PubMed]
  20. T. Ikegami, S. Slyusarev, T. Kurosu, Y. Fukuyama, and S. Ohshima, “Characteristics of a cw monolithic KTiOPO4 optical parametric oscillator,” Appl. Phys. B 66, 719–725 (1998). [CrossRef]
  21. W. Wiechmann, S. Kubota, T. Fukui, and H. Masuda, “Refractive-index temperature derivatives of potassium titanyl phosphate,” Opt. Lett. 18, 1208–1210 (1993). [CrossRef] [PubMed]
  22. J. D. Bierlein and H. Vanherzeele, “Potassium titanyl phosphate: properties and new applications,” J. Opt. Soc. Am. B 6, 622–633 (1989). [CrossRef]
  23. Y. Fang, Y. Cui, and M. H. Dunn, “Thermal dependence of the principal refractive indices of lithium triborate,” J. Opt. Soc. Am. B 12, 638–643 (1995). [CrossRef]
  24. D. Eimerl, L. Davis, S. Velsko, E. K. Gordon, and A. Zalkin, “Optical, mechanical and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987). [CrossRef]
  25. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997). [CrossRef]
  26. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Berlin, 1991), p. 76.
  27. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modelling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831–1833 (1990). [CrossRef]
  28. A. Sennaroglu, A. Askar, and F. M. Atay, “Quantitative study of laser beam propagation in a thermally loaded absorber,” J. Opt. Soc. Am. B 14, 356–363 (1997). [CrossRef]
  29. R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, New York, 1996), Chap. 6, p. 353.
  30. K. Stoll, J.-J. Zondy, and O. Acef, “Fourth-harmonic generation of a continuous-wave CO2 laser by use of an AgGaSe2/ZnGeP2 doubly resonant device,” Opt. Lett. 22, 1302–1304 (1997). [CrossRef]
  31. P. Dubé, L.-S. Ma, J. Ye, P. Jungner, and J. L. Hall, “Thermally-induced self-locking of an optical cavity by overtone absorption in acetylene gas,” J. Opt. Soc. Am. B 13, 2041–2054 (1996). [CrossRef]
  32. K. An, B. A. Sones, C. Fang-Yen, R. R. Dasari, and M. S. Feld, “Optical bistability induced by mirror absorption: measurement of absorption coefficients at the sub-ppm level,” Opt. Lett. 22, 1433–1435 (1997). [CrossRef]
  33. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused laser beams,” J. Appl. Phys. 39, 3597–3639 (1968). [CrossRef]
  34. P. A. Belanger and C. Pare, “Self-focusing of Gaussian beams: an alternate derivation,” Appl. Opt. 22, 1293–1295 (1983). [CrossRef] [PubMed]
  35. V. Magni, G. Cerullo, and S. De Silvestri, “ABCD matrix analysis of propagation of Gaussian beams through Kerr media,” Opt. Commun. 96, 348–355 (1993). [CrossRef]
  36. D. Huang, M. Ulman, L. H. Acioli, H. A. Haus, and J. G. Fujimoto, “Self-focusing-induced saturable loss for laser mode locking,” Opt. Lett. 17, 511–513 (1992). [CrossRef] [PubMed]
  37. Y. C. Chen and W. Z. Lin, “Thick lens model for self-focusing in Kerr medium,” Appl. Phys. Lett. 73, 429–431 (1998). [CrossRef]
  38. A. E. Siegman, Lasers, A. Kelly, ed. (University Science, Mill Valley, Calif., 1986), Chaps. 20–21, pp. 777–857.
  39. D. Georgiev, J. Herrmann, and U. Stamm, “Cavity design for optimum nonlinear absorption in Kerr-lens mode-locked solid-state lasers,” Opt. Commun. 92, 368–375 (1992). [CrossRef]
  40. J.-J. Zondy, A. Douillet, A. P. Yelisseyev, S. I. Lobanov, and L. I. Isaenko, “Output power optimization of continuous-wave, mid-infrared AgGaS2 doubly/triply resonant optical parametric oscillators,” in Advanced Solid State Lasers (1999), M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 558–566.
  41. T. Debuisschert, A. Sizmann, E. Giacobino, and C. Fabre, “Type-II continuous-wave optical parametric oscillation and frequency tuning characteristics,” J. Opt. Soc. Am. B 10, 1668–1680 (1993). [CrossRef]
  42. A. E. Siegman, “Nonlinear optical effects: an optical power limiter,” Appl. Opt. 1, 739–744 (1962). [CrossRef]
  43. A. Yariv, “Theory of the optical parametric oscillator,” IEEE J. Quantum Electron. QE-2, 418–424 (1966). [CrossRef]
  44. M. J. Padgett, F. G. Colville, and M. H. Dunn, “Mode selection in doubly-resonant optical parametric oscillators,” IEEE J. Quantum Electron. 30, 2979–2985 (1994). [CrossRef]
  45. R. C. Eckardt, C. D. Nabors, W. J. Kozlovsky, and R. L. Byer, “Optical parametric oscillator frequency tuning and control,” J. Opt. Soc. Am. B 8, 646–667 (1991). [CrossRef]
  46. G. S. Agarwal and S. D. Gupta, “Model for mode hopping in optical parametric oscillators,” J. Opt. Soc. Am. B 14, 2174–2180 (1997). [CrossRef]
  47. C. Schwob, P. F. Cohadon, C. Fabre, M. A. M. Marte, H. Ritsch, A. Gatti, and L. Lugiato, “Transverse effects and mode couplings in OPOs,” Appl. Phys. B 66, 685–699 (1998). [CrossRef]
  48. P. D. Drummond, K. J. McNeil, and D. F. Walls, “Non-equilibrium transition in sub/second harmonic generation: I. Semiclassical theory,” Opt. Acta 27, 321–335 (1980). [CrossRef]
  49. L. A. Lugiato, C. Oldano, C. Fabre, E. Giacobino, and R. J. Horowicz, “Bistability, self-pulsing and chaos in optical parametric oscillators,” Nuovo Cimento D 10, 957–977 (1988). [CrossRef]
  50. C. Richy, K. I. Petsas, E. Giacobino, C. Fabre, and L. Lugiato, “Observation of bistability and delayed bifurcation in a triply resonant optical parametric oscillator,” J. Opt. Soc. Am. B 12, 456–461 (1995). [CrossRef]
  51. R. G. Smith, “A study of factors affecting the performance of a continuously pumped doubly resonant optical parametric oscillator,” IEEE J. Quantum Electron. QE-9, 530–541 (1973). [CrossRef]
  52. S. E. Harris, “Tunable optical parametric oscillators,” Proc. IEEE 57, 2096–2113 (1969). [CrossRef]
  53. R. Al-Tahtamouni, K. Bencheikh, R. Stortz, K. Schneider, M. Lang, J. Mlynek, and S. Schiller, “Long-term stable operation and absolute frequency stabilization of a doubly resonant parametric oscillator,” Appl. Phys. B 66, 733–739 (1998). [CrossRef]
  54. J. D. Lindsay, G. A. Turnbull, M. H. Dunn, and M. Ebrahimzadeh, “Doubly resonant continuous-wave optical parametric oscillator pumped by a single-mode diode laser,” Opt. Lett. 23, 1889–1891 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited