OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 16, Iss. 9 — Sep. 1, 1999
  • pp: 1539–1545

Laser-diode-seeded operation of a femtosecond optical parametric amplifier with MgO:LiNbO3 and generation of 5-cycle pulses near 3 μm

F. Rotermund, V. Petrov, F. Noack, M. Wittmann, and G. Korn  »View Author Affiliations

JOSA B, Vol. 16, Issue 9, pp. 1539-1545 (1999)

View Full Text Article

Acrobat PDF (149 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A high-power traveling-wave optical parametric amplifier based on MgO:LiNbO3 that is capable of producing extremely short pulses in the 3-μm spectral range when pumped by a femtosecond Ti:sapphire amplifier near 800 nm has been developed. With seeding by 1-ns pulses from a low-power Q-switched microlaser, we demonstrate idler tunability between 3.1 and 3.9 μm at >10-μJ pulse energy and <200-fs pulse duration. The maximum internal conversion efficiency is 40% for a single pass. The extremely high gain factors achieved permit a more compact solution for the seed source, and we also report on successful seeding with a pulsed laser diode in the femtosecond regime, achieving 5-μJ pulse energy and 130-fs pulse duration near 3.5 μm. We have produced nearly transform-limited 50-fs, 2-μJ pulses near 3 μm with a 1-mm-thick MgO:LiNbO3 sample by adding a second pass and employing sub-30-fs pumping.

© 1999 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

F. Rotermund, V. Petrov, F. Noack, M. Wittmann, and G. Korn, "Laser-diode-seeded operation of a femtosecond optical parametric amplifier with MgO:LiNbO3 and generation of 5-cycle pulses near 3 μm," J. Opt. Soc. Am. B 16, 1539-1545 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. V. Petrov, F. Seifert, O. Kittelmann, J. Ringling, and F. Noack, “Extension of the tuning range of a femtosecond Ti:sapphire laser amplifier through cascaded second-order nonlinear frequency conversion processes,” J. Appl. Phys. 76, 7704–7712 (1994).
  2. G. Cerullo, M. Nisoli, and S. De Silvestri, “Generation of 11 fs pulses tunable across the visible by optical parametric amplification,” Appl. Phys. Lett. 71, 3616–3618 (1997); “Sub-8-fs pulses from a visible optical parametric amplifier,” in Conference on Lasers and Electro-Optics CLEO/Europe (Optical Society of America, Washington, D.C., 1998), paper CWH2.
  3. A. Shirakawa and T. Kobayashi, “Noncollinearly phase-matched femtosecond optical parametric amplification with a 2000 cm−1 bandwidth,” Appl. Phys. Lett. 72, 147–149 (1998); A. Shirakawa, I. Sakane, and T. Kobayashi, “Pulse-front-matched optical parametric amplification for pulse generation tunable in the visible and near-infrared reaching to 6.5 fs,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 6 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), postdeadline paper CPD11.
  4. F. Seifert, V. Petrov, and M. Woerner, “Solid-state laser system for the generation of midinfrared femtosecond pulses tunable from 3.3 to 10 μm,” Opt. Lett. 19, 2009–2011 (1994).
  5. M. K. Reed and M. K. Steiner Shepard, “Tunable infrared generation using a femtosecond 250 kHz Ti:sapphire regenerative amplifier,” IEEE J. Quantum Electron. 32, 1273–1277 (1996); B. Golubovic and M. K. Reed, “All-solid-state generation of 100-kHz tunable mid-infrared 50-fs pulses in type I and type II AgGaS2,” Opt. Lett. 23, 1760–1762 (1998).
  6. D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, and P. Günter, “High average power, high-repetition rate femtosecond pulse generation in the 1–5 μm region using an optical parametric oscillator,” Appl. Phys. Lett. 68, 452–454 (1996).
  7. D. T. Reid, Z. Penman, M. Ebrahimzadeh, W. Sibbett, H. Karlsson, and F. Laurell, “Broadly tunable infrared femtosecond optical parametric oscillator based on periodically poled RbTiOAsO4,” Opt. Lett. 22, 1397–1399 (1997).
  8. K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “Broadly tunable mid-infrared femtosecond optical parametric oscillator using all-solid-state-pumped periodically poled lithium niobate,” Opt. Lett. 22, 1458–1460 (1997).
  9. G. R. Holtom, R. A. Crowell, and X. S. Xie, “High-repetition-rate femtosecond optical parametric oscillator–amplifier system near 3 μm,” J. Opt. Soc. Am. B 12, 1723–1731 (1995).
  10. V. Petrov and F. Noack, “Tunable femtosecond optical parametric amplifier in the mid-infrared with narrow-band seeding,” J. Opt. Soc. Am. B 12, 2214–2221 (1995).
  11. U. Emmerichs, S. Woutersen, and H. J. Bakker, “Generation of intense femtosecond optical pulses near 3 μm with a kilohertz repetition rate,” J. Opt. Soc. Am. B 14, 1480–1483 (1997).
  12. G. M. Gale, G. Gallot, F. Hache, and R. Sander, “Generation of intense highly coherent femtosecond pulses in the mid infrared,” Opt. Lett. 22, 1253–1255 (1997).
  13. V. Petrov, F. Noack, and R. Stolzenberger, “Seeded femtosecond optical parametric amplification in the mid-infrared spectral region above 3 μm,” Appl. Opt. 36, 1164–1172 (1997).
  14. V. Petrov and F. Noack, “Mid-infrared femtosecond optical parametric amplification in potassium niobate,” Opt. Lett. 21, 1576–1578 (1996).
  15. J. D. Kafka and M. L. Watts, “A potassium niobate OPA pumped by an amplified Ti:sapphire laser,” in Ultrafast Phenomena X, Vol. 62 of Springer Series in Chemical Physics, P. F. Barbara, J. G. Fujimoto, W. H. Knox, and W. Zinth, eds. (Springer-Verlag, Berlin, 1996), pp. 38–39.
  16. V. Petrov and F. Noack, “Frequency upconversion of tunable femtosecond pulses by parametric amplification and sum-frequency generation in a single nonlinear crystal,” Opt. Lett. 20, 2171–2173 (1995).
  17. D. A. Bryan, R. R. Rice, R. Gerson, H. E. Tomaschke, K. L. Sweeney, and L. E. Halliburton, “Magnesium-doped lithium niobate for higher optical power applications,” Opt. Eng. 24, 138–143 (1985).
  18. S. Lin, Y. Tanaka, S. Takeuchi, and T. Suzuki, “Improved dispersion equation for MgO:LiNbO3 crystal in the infrared spectral range derived from sum and difference frequency mixing,” IEEE J. Quantum Electron. 32, 124–126 (1996).
  19. S. Lin and T. Suzuki, “Tunable picosecond mid-infrared pulses generated by optical parametric generation/amplification in MgO:LiNbO3 crystals,” Opt. Lett. 21, 579–581 (1996).
  20. S. Lin, Y. Tanaka, M. Aono, and T. Suzuki, “Optical parametric amplification using the phase-matching retracing behavior in MgO:LiNbO3 for the generation of intense widely tunable mid-infrared pulses,” Jpn. J. Appl. Phys. 36, 3510–3514 (1997).
  21. V. Petrov, Y. Tanaka, and T. Suzuki, “Parametric generation of 1-ps pulses between 5 and 11 μm with a ZnGeP2 crystal,” IEEE J. Quantum Electron. 33, 1749–1755 (1997).
  22. R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
  23. R. L. Byer, “Optical parametric oscillators,” in Quantum Electronics: A Treatise, H. Rabin and C. L. Tang, eds. (Academic, New York, 1975), pp. 587–702.
  24. V. L. Boichenko, I. I. Zasavitskii, Y. V. Kosichkin, A. P. Tarasevich, V. G. Tunkin, and A. P. Shotov, “Picosecond parametric oscillator amplifying radiation from a tunable semiconductor laser,” Sov. J. Quantum Electron. 14, 141–142 (1984) [Kvantovaya Elektron. (Moscow) 11, 203–205 (1984)].
  25. E. T. J. Nibbering, O. Dühr, and G. Korn, “Generation of intense tunable 20-fs pulses near 400 nm by use of a gas-filled hollow waveguide,” Opt. Lett. 22, 1335–1237 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited