OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 16, Iss. 9 — Sep. 1, 1999
  • pp: 1592–1596

Pattern formation in the presence of walk-off for a type II optical parametric oscillator

Gonzalo Izús, Marco Santagiustina, Maxi San Miguel, and Pere Colet  »View Author Affiliations


JOSA B, Vol. 16, Issue 9, pp. 1592-1596 (1999)
http://dx.doi.org/10.1364/JOSAB.16.001592


View Full Text Article

Enhanced HTML    Acrobat PDF (374 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show the relevance of walk-off effects in pattern formation in a type II optical parametric oscillator at frequency degeneracy. With walk-off neglected only phase patterns are formed, and the intensity distribution is homogeneous. Walk-off changes the instability from absolute to convective for some parameter range. In the absolutely unstable regime it induces for each polarization component of light a competition between two phase stripe patterns (traveling waves) of different wavelength. Phase stripe patterns at each of the wavelengths are equally likely to be selected, and, after a transient regime of coexistence, one of them takes over. In the convectively unstable regime the existence of intensity patterns sustained by noise is shown. The patterns arise from the interference between traveling waves that are generated by the dynamical amplification of noise.

© 1999 Optical Society of America

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(270.2500) Quantum optics : Fluctuations, relaxations, and noise

Citation
Gonzalo Izús, Marco Santagiustina, Maxi San Miguel, and Pere Colet, "Pattern formation in the presence of walk-off for a type II optical parametric oscillator," J. Opt. Soc. Am. B 16, 1592-1596 (1999)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-16-9-1592


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. A. Lugiato, M. Brambilla, and A. Gatti, “Optical pattern formation,” in Vol. 40 of Advances in Atomic Molecular and Optical Physics, B. Bederson and H. Walther, eds. (Academic, New York, 1999), pp. 229–306, and references cited therein.
  2. R. A. Fuerst, D-M. Baboiu, B. Lawrence, W. E. Torruelas, G. I. Stegeman, and S. Trillo, “Spatial modulational instability and multisolitonlike generation in a quadratically nonlinear optical medium,” Phys. Rev. Lett. 78, 2756–2759 (1997). [CrossRef]
  3. K. Staliunas, “Optical vortices during three-wave nonlinear coupling,” Opt. Commun. 91, 82–86 (1992); G-L. Oppo, M. Brambilla, and L. A. Lugiato, “Formation and evolution of roll patterns in optical parametric oscillators,” Phys. Rev. A 49, 2028–2032 (1994); S. Longhi, “Hydrodynamic equation model for degenerate optical parametric oscillators,” J. Mod. Opt. JMOPEW 43, 1089–1094 (1996); G. J. de Varcarcel, K. Staliunas, E. Roldan, and V. J. Sanchez-Morcillo, “Transverse patterns in degenerate optical parametric oscillation and degenerate four-wave mixing,” Phys. Rev. A PLRAAN 54, 1609–1624 (1996). [CrossRef] [PubMed]
  4. C. Schwob, P. F. Cohadon, C. Fabre, M. A. M. Marte, H. Ritsch, A. Gatti, and L. A. Lugiato, “Transverse effects and mode-coupling in OPOS,” Appl. Phys. B 66, 685–699 (1998). [CrossRef]
  5. H. J. Kimble, “Quantum fluctuations in quantum optics—squeezing and related phenomena,” in Fundamental Systems in Quantum Optics, J. Dalibard, J. M. Raimond, and J. Zinn-Justine, eds. (Elsevier Science, Amsterdam, 1992), pp. 545–673.
  6. S. Longhi, “Localized structures in optical parametric oscillators,” Phys. Scr. 57, 611–635 (1997); K. Staliunas and V. J. Sanchez-Morcillo, “Spatial-localized structures in degenerate optical parametric oscillators,” Phys. Rev. A 57, 1454–1457 (1998); S. Trillo and M. Haelterman, “Excitation and bistability of self-trapped signal beams in optical parametric oscillators,” Opt. Lett. OPLEDP 23, 1514–1516 (1998); G. L. Oppo, A. J. Scroggie, and W. J. Firth, “From domain walls to localised structures in degenerate optical parametric oscillators,” J. Opt. B ZZZZZZ 1, 133–138 (1999); M. Le Berre, D. Leduc, E. Ressayre, and A. Tallet, “Striped and circular domain walls in the DOPO,” J. Opt. B ZZZZZZ 1, 153–160 (1999). [CrossRef]
  7. M. Santagiustina, P. Colet, M. San Miguel, and D. Walgraef, “Walk-off and pattern selection in optical parametric oscillators,” Opt. Lett. 23, 1167–1169 (1998). [CrossRef]
  8. M. Santagiustina, P. Colet, M. San Miguel, and D. Walgraef, “Two-dimensional noise-sustained structures in optical parametric oscillators,” Phys. Rev. E 58, 3843–3853 (1998). [CrossRef]
  9. M. Santagiustina, P. Colet, M. San Miguel, and D. Walgraef, “Growth dynamics of noise-sustained structures in nonlinear optical resonators,” Opt. Express 3, 63–70 (1998), http://epubs.osa.org/opticsexpress. [CrossRef] [PubMed]
  10. H. Ward, M. N. Ouarzazi, M. Taki, and P. Glorieux, “Transverse dynamics of optical parametric oscillators in presence of walk-off,” Eur. Phys. J. D 3, 275–288 (1998). [CrossRef]
  11. S. Longhi, “Traveling-wave states and secondary instabili-ties in optical parametric oscillators,” Phys. Rev. A 53, 4488–4499 (1996). [CrossRef] [PubMed]
  12. M. Santagiustina, P. Colet, M. San Miguel, and D. Walgraef, “Noise-sustained convective structures in nonlinear optics,” Phys. Rev. Lett. 79, 3633–3636 (1997). [CrossRef]
  13. A. Gatti, H. Wiedemann, L. A. Lugiato, I. Marzoli, G. L. Oppo, and S. M. Barnett, “Langevin treatment of quantum fluctuations and optical patterns in optical parametric oscillators below threshold,” Phys. Rev. A 56, 877–897 (1997). [CrossRef]
  14. C. Richy, K. I. Petsas, E. Giacobino, C. Fabre, and L. Lugiato, “Observation of bistability and delayed bifurcation in a triply resonant optical parametric oscillator,” J. Opt. Soc. Am. B 12, 456–461 (1995). [CrossRef]
  15. R. J. Deissler, “Noise-sustained structure, intermittency, and the Ginzburg–Landau equation,” J. Stat. Phys. 40, 371–395 (1985); “External noise and the origin and dynamics of structure in convectively unstable systems,” J. Stat. Phys. 54, 1459–1488 (1989). [CrossRef]
  16. J. Garcia-Ojalvo, R. Vilaseca, and M. C. Torrent, “Suppression of Autler–Townes gain splitting in lasers with a planar resonator,” Europhys. Lett. 43, 261–266 (1998). [CrossRef]
  17. A. Berzanskis, A. Matijosius, A. Piskarkas, V. Smilgevicius, and A. Stabinis, “Sum-frequency mixing of optical vortices in nonlinear crystals,” Opt. Commun. 150, 372–380 (1998). [CrossRef]
  18. G-L. Oppo, A. J. Scroggie, and W. J. Firth, “Domain walls in optical parametric oscillators: dynamics and stabilization,” in European Quantum Electronics Conference (EQEC) (Optical Society of America, Washington, D.C., 1998), paper QFA2.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited