OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 17, Iss. 1 — Jan. 1, 2000
  • pp: 120–127

Femtosecond optical Kerr effect measurements in silicate glasses

Janice E. Aber, Maurice C. Newstein, and Bruce A. Garetz  »View Author Affiliations

JOSA B, Vol. 17, Issue 1, pp. 120-127 (2000)

View Full Text Article

Acrobat PDF (144 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The optical Kerr effect was measured with 130-fs laser pulses for a variety of metal-doped silicate glasses, including pairs of glasses with comparable refractive index and Abbe number but different dopant cations. The nonlinear response appeared to be instantaneous within the resolution of the experiment, matching the measured autocorrelation function of the incident laser pulses, and therefore potentially useful in ultrafast photonic switching applications. We explain the absence of any detectable slow nuclear components through a detailed time-domain analysis of the contributions to an optical Kerr effect measurement made with ultrashort pulses. This analysis describes nonresonant vibrational contributions that are temporally indistinguishable from electronic contributions. The measured third-order susceptibilities of the Ti-, Nb-, and La-doped glasses were significantly overestimated by semiempirical models based on linear material parameters, such as the model developed by Lines [J. Appl. Phys. 69, 6876 (1991)] and the equation given by Boling–Glass–Owyoung [IEEE J. Quantum Electron. QE-14, 601 (1978)].

© 2000 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(190.3270) Nonlinear optics : Kerr effect
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

Janice E. Aber, Maurice C. Newstein, and Bruce A. Garetz, "Femtosecond optical Kerr effect measurements in silicate glasses," J. Opt. Soc. Am. B 17, 120-127 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. W. Koechner, Solid State Laser Engineering, 2nd ed. (Springer-Verlag, Berlin, 1988), Secs. 4.3 and 11.3, and references therein.
  2. E. M. Vogel, “Glasses as non-linear photonic materials,” J. Am. Ceram. Soc. 72, 719–724 (1989); N. F. Borrelli and D. W. Hall, “Nonlinear optical properties of glasses” in Optical Properties of Glass, D. R. Uhlmann and N. J. Kreidl, eds. (American Ceramic Society, Westerville, Ohio, 1991), pp. 87–124.
  3. S. R. Friberg and P. W. Smith, “Nonlinear optical glasses for ultrafast optical switches,” IEEE J. Quantum Electron. QE-23, 2089–2094 (1987).
  4. G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, and C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol. 6, 953–970 (1988).
  5. M. E. Lines, “Oxide glasses for fast photonic switching: a comparative study,” J. Appl. Phys. 69, 6876–6884 (1991).
  6. N. L. Boling, A. J. Glass, and A. Owyoung, “Empirical relationships for predicting nonlinear refractive index changes in optical solids,” IEEE J. Quantum Electron. QE-14, 601–608 (1978).
  7. R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive-index measurements of glasses using three-wave frequency mixing,” J. Opt. Soc. Am. B 4, 875–881 (1987).
  8. I. Thomazeau, J. Etchepare, G. Grillon, and A. Migus, “Electronic nonlinear optical susceptibilities of silicate glasses,” Opt. Lett. 10, 223–225 (1985).
  9. E. M. Vogel, D. M. Krol, J. L. Jackel, and J. S. Aitchison, “Structure and nonlinear optical properties of glasses for photonic switching,” Mat. Res. Soc. Symp. Proc. 152, 83–87 (1989).
  10. R. Hellwarth, J. Cherlow, and T.-T. Yang, “Origin and frequency dependence of nonlinear optical susceptibilities of glasses,” Phys. Rev. B 11, 964–967 (1975).
  11. K. A. Nelson, “Time resolved spectroscopy,” in Encyclopedia of Physics, Science, and Technology (Academic, New York, 1989), p. 607.
  12. R. W. Hellwarth, “Third-order optical susceptibilities of liquids and solids,” Prog. Quantum Electron. 5, 1–68 (1977).
  13. D. Heiman, R. W. Hellwarth, and D. S. Hamilton, “Raman scattering and nonlinear refractive index measurements of optical glasses,” J. Non-Cryst. Solids 34, 63–79 (1979).
  14. D. Heiman, D. S. Hamilton, and R. W. Hellwarth, “Brillouin scattering measurements on optical glasses,” Phys. Rev. B 19, 6583–6592 (1979).
  15. S. R. Friberg, A. M. Weiner, Y. Silberberg, B. G. Sfez, and P. W. Smith, “Femtosecond switching in a dual-core-fiber nonlinear coupler,” Opt. Lett. 13, 904–906 (1988).
  16. N. Sugimoto, H. Kanabara, S. Fujiwara, K. Tanaka, and K. Hirao, “Ultrafast response of third-order optical nonlinearity in glasses containing Bi2O3,” Opt. Lett. 21, 1637–1639 (1996).
  17. I. Kang, T. D. Krauss, F. W. Wise, B. G. Aitken, and N. F. Borrelli, “Femtosecond measurement of enhanced optical nonlinearities of sulfide glasses and heavy metal doped oxide glasses,” J. Opt. Soc. Am. B 12, 2053–2059 (1995).
  18. M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
  19. R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337–3350 (1989).
  20. A. Kleinman, “Nonlinear dielectric polarization in optical media,” Phys. Rev. 126, 1977–1979 (1962).
  21. I. Kang, S. Smolorz, T. Krauss, F. Wise, B. G. Aitken, and N. F. Borrelli, “Time domain observation of nuclear contributions to the optical nonlinearities of glasses,” Phys. Rev. B 54, 12641–12644 (1996).
  22. D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
  23. M. D. Levenson and J. J. Song, “Coherent Raman spectroscopy,” in Coherent Nonlinear Optics, M. S. Feld and V. S. Letokov, eds. (Springer-Verlag, Berlin, 1980), pp. 293–373.
  24. A. Owyoung, “The origins of the nonlinear refractive indices of liquids and glasses,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1972), pp. 25, 32, 49, 63.
  25. D. W. Hall, M. A. Newhouse, N. F. Borrelli, W. H. Dumbaugh, and D. L. Weidman, “Nonlinear optical susceptibilities of high index glasses,” Appl. Phys. Lett. 54, 1293–1295 (1989).
  26. W. L. Smith, “Nonlinear refractive index,” in Handbook of Laser Science and Technology, M. J. Weber, ed. (CRC Press, Boca Raton, Fla., 1986), Vol. III, Pt. 1, pp. 259–264.
  27. K. Sala, G. A. Kenney-Wallace, and G. E. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. QE-16, 990–996 (1980).
  28. E. P. Ippen and C. V. Shank, “Picosecond response of a high repetition rate CS2 optical Kerr gate,” Appl. Phys. Lett. 26, 92–93 (1975).
  29. J.-L. Oudar, “Coherent phenomena involved in the time-resolved optical Kerr effect,” IEEE J. Quantum Electron. QE-19, 713–718 (1983).
  30. Y.-X. Yan and K. A. Nelson, “Impulsive stimulated light scattering. II. Comparison to frequency domain light-scattering spectroscopy,” J. Chem. Phys. 87, 6257–6265 (1987).
  31. D. McMorrow and W. T. Lotshaw, “The frequency response of condensed-phase media to femtosecond optical pulses: spectral filter effects,” Chem. Phys. Lett. 174, 85–94 (1990).
  32. D. McMorrow, “Separation of nuclear and electronic contributions to femtosecond four-wave mixing data,” Opt. Commun. 86, 236–244 (1991).
  33. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6, 1159–1165 (1989).
  34. The Raman data available from Ref. 13 did not extend below 30 cm−1, so we had to extrapolate the scattered intensities below 30 cm−1. As per Ref. 13, we excluded the very-low-frequency excess light scattering peak from our integrations and assumed that the intensity goes to zero at zero frequency. The numerical values of the ratio A(0)/B(0) calculated from our fit were quite sensitive to the choice of extrapolation function, ranging from ~0.50 to ~0.72 for SF6 glass. These values can be compared with the value 0.73 of this ratio reported in Ref. 13. However, the effect on the resulting Kerr signals was negligible (less than a few percent).
  35. G. L. Eesley, “Coherent Raman spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 22, 507–576 (1979).
  36. N. Bloembergen, Nonlinear Optics (Benjamin, Reading, Mass., 1977), pp. 41–43.
  37. N. F. Borrelli, B. G. Aitken, M. A. Newhouse, and D. W. Hall, “Electric-field-induced birefringence properties of high-refractive-index glasses exhibiting large Kerr nonlinearities,” J. Appl. Phys. 70, 2774–2779 (1991).
  38. R. T. Williams and E. J. Frieble, “Radiation damage in optically transmitting crystals and glasses,” in Handbook of Laser Science and Technology, M. J. Weber, ed. (CRC Press, Boca Raton, Fla., 1986), Vol. III, Part 1, pp. 388–398.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited