OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 17, Iss. 1 — Jan. 1, 2000
  • pp: 23–27

Praseodymium-doped alkali bismuth gallate glasses

S. Q. Man, E. Y. B. Pun, and P. S. Chung  »View Author Affiliations


JOSA B, Vol. 17, Issue 1, pp. 23-27 (2000)
http://dx.doi.org/10.1364/JOSAB.17.000023


View Full Text Article

Acrobat PDF (114 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and demonstrate alkali bismuth gallate glasses as suitable hosts for the rare earth praseodymium (Pr<sup>3+</sup>) operating at 1.3-μm wavelength. The structure of the glasses was investigated by Raman spectroscopy. The optical absorption and the photoluminescence properties of Pr<sup>3+</sup> in these glasses were characterized. The Raman spectrum shows two strong peaks, at 134 and 381 cm<sup>−1</sup>, and a weak peak at 660 cm<sup>−1</sup>. The results indicate that bismuth (Bi<sup>3+</sup>) and gallium (Ga<sup>3+</sup>) cations do take part in the formation of the glass network. The emission from the Pr<sup>3+</sup>:  <sup>1</sup><i>G</i><sub>4</sub> → <sup>3</sup><i>H</i><sub>5</sub> transition is at 1.34-μm wavelength, and the spectral bandwidth is 120 nm, which is wider than those of fluoride and chalcogenide glasses. The lifetime of the <sup>1</sup><i>G</i><sub>4</sub> level is ~78 μs, and the quantum efficiency is ~17.4%, which is higher than that in fluoride glasses.

© 2000 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.5690) Materials : Rare-earth-doped materials
(250.4480) Optoelectronics : Optical amplifiers
(250.5230) Optoelectronics : Photoluminescence
(300.6250) Spectroscopy : Spectroscopy, condensed matter
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

Citation
S. Q. Man, E. Y. B. Pun, and P. S. Chung, "Praseodymium-doped alkali bismuth gallate glasses," J. Opt. Soc. Am. B 17, 23-27 (2000)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-17-1-23


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. Barbier, M. Rattay, F. Saint André, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on Er/Yb doped waveguide amplifiers and integrated splitters,” IEEE Photon. Technol. Lett. 9, 315–317 (1997).
  2. P. Camy, J. E. Román, F. W. Willems, M. Hempstead, J. C. van der Plaats, C. Prel, A. Béguin, A. M. J. Koonen, J. S. Wilkinson, and C. Lerminiaux, “Ion-exchanged planar lossless splitter at 1.5 μm,” Electron. Lett. 32, 321–323 (1996).
  3. Y. Miyajima, T. Sugawa, and Y. Fukasaku, “38.2 dB amplification at 1.31 μm and possibility of 0.98 μm pumping in Pr3+-doped fluoride fiber,” Electron. Lett. 27, 1706–1707 (1991).
  4. Y. Nishida, T. Kanamori, Y. Ohishi, M. Yamada, K. Kobayashi, and S. Sudo, “Efficient PDFA module using high-NA PbF2/InF3-based fluoride fiber,” IEEE Photon. Technol. Lett. 9, 318–320 (1997).
  5. M. A. Newhouse, R. F. Bartholomew, B. G. Aitken, L. J. Button, and N. F. Borrelli, “Pr-doped mixed-halide glasses for 1300 nm amplification,” IEEE Photon. Technol. Lett. 6, 189–191 (1994).
  6. K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel, Jr., “Pr3+-doped Ge–Ga–S glasses for 1.3 μm optical fiber amplifiers,” J. Non-Cryst. Solids 182, 257–261 (1995).
  7. H. Tawarayama, E. Ishikawa, K. Itoh, H. Aoki, H. Yanagita, K. Okada, K. Yamanaka, Y. Matsuoka, and H. Toratani, “Efficient amplification at 1.3 μm in a Pr3+-doped Ga–Na–S fiber,” presented at the International Conference on Optical Amplifiers and Their Applications, Victoria, B.C., Canada, 1997.
  8. P. A. Tick, N. F. Borrelli, L. K. Cornelius, and M. A. Newhouse, “Transparent glass ceramics for 1300 nm amplifier applications,” J. Appl. Phys. 78, 6367–6374 (1995).
  9. R. S. Quimby, P. A. Tick, N. F. Borrelli, and L. K. Cornelius, “Quantum efficiency of Pr3+ doped transparent glass ceramics,” J. Appl. Phys. 83, 1649–1653 (1998).
  10. W. H. Dumbaugh and J. C. Lapp, “Heavy metal oxide glasses,” J. Am. Ceram. Soc. 75, 2315–2326 (1992).
  11. Y. G. Choi and J. Heo, “1.3 μm emission and multiphonon relaxation phenomena in PbO–Bi2O3–Ga2O3 glasses doped with rare earths,” J. Non-Cryst. Solids 217, 199–207 (1997).
  12. J. C. Lapp, “Alkali bismuth gallate glasses,” Am. Ceram. Soc. Bull. 71, 1543–1549 (1992).
  13. M. Saad and M. Poulain, “Glass-forming ability criterion,” Mater. Sci. Forum 19–20, 11–18 (1987).
  14. F. Miyaji and S. Sakka, “Structure of PbO–Bi2O3–Ga2O3 glasses,” J. Non-Cryst. Solids 134, 77–85 (1991).
  15. M. Janewicz, J. Wasylak, and E. Czerwosz, “Raman investigation of PbO–BiO1.5–GaO1.5 glasses,” Phys. Chem. Glasses 35, 169–173 (1994).
  16. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
  17. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
  18. M. J. Weber, J. D. Myers, and D. H. Blackburn, “Optical properties of Nd3+ in tellurite and phosphotellurite glasses,” J. Appl. Phys. 52, 2944–2949 (1981).
  19. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
  20. R. R. Jacobs and M. J. Weber, “Dependence of the 4F3/2→ 4I11/2 induced-emission cross section for Nd3+ on glass composition,” IEEE J. Quantum Electron. QE-12, 103–111 (1976).
  21. M. J. Weber, “Spontaneous emission probabilities and quantum efficiencies for excited states of Pr3+ in LaF3,” J. Chem. Phys. 48, 4774–4780 (1968).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited