OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 17, Iss. 1 — Jan. 1, 2000
  • pp: 53–62

Dual-pump four-wave mixing in a double-mode distributed feedback laser

J. Minch and S. L. Chuang  »View Author Affiliations


JOSA B, Vol. 17, Issue 1, pp. 53-62 (2000)
http://dx.doi.org/10.1364/JOSAB.17.000053


View Full Text Article

Enhanced HTML    Acrobat PDF (195 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a comprehensive theoretical model with experimental results on four-wave mixing in a distributed feedback laser with two pump modes. Here the twin lasing modes serve as pump waves for the four-wave mixing, which takes place within the laser cavity. We show what we believe are new experimental measurements of the two-pump four-wave mixing conversion efficiency spectrum and show that, to first order, there is no fundamental dependence of the conversion efficiency on pump separation. This result indicates significant improvement in the probe and conjugate wavelength separation and in the conversion efficiency. Our theoretical model agrees quite well with the measured data and predicts the key experimentally observed phenomena, including the relative invariance of the conversion efficiency on pump separation, and the strong enhancement of certain conjugate waves when the probe detuning is close to the pump separation.

© 2000 Optical Society of America

OCIS Codes
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW

Citation
J. Minch and S. L. Chuang, "Dual-pump four-wave mixing in a double-mode distributed feedback laser," J. Opt. Soc. Am. B 17, 53-62 (2000)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-17-1-53


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14, 955–966 (1996). [CrossRef]
  2. T. Mukai and T. Saitoh, “Detuning characteristics and conversion efficiency of nearly degenerate four-wave mixing in a 1.5-μm traveling-wave semiconductor laser amplifier,” IEEE J. Quantum Electron. 26, 865–875 (1990). [CrossRef]
  3. J. Zhou, N. Park, K. Vahala, M. Newkirk, and B. Miller, “Four-wave mixing wavelength conversion efficiency in semiconductor traveling-wave amplifiers measured to 65 nm of wavelength shift,” IEEE Photon. Technol. Lett. 6, 984–987 (1994). [CrossRef]
  4. F. Girardin, J. Eckner, G. Guekos, R. Dall’Ara, A. Mecozzi, A. D’Ottavi, F. Martelli, S. Scotti, and P. Spano, “Low-noise and very high-efficiency four-wave mixing in 1.5-mm-long semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 9, 746–748 (1997). [CrossRef]
  5. S. Murata, A. Tomita, J. Shimuzu, H. Kitamura, and A. Suzuki, “Observation of highly non-degenerate four-wave mixing (>1 THz) in an InGaAsP multiple quantum well laser,” Appl. Phys. Lett. 58, 1458–1460 (1991). [CrossRef]
  6. A. Mecozzi, A. D’Ottani, and R. Hui, “Nearly degenerate four-wave mixing in distributed feedback semiconductor lasers operating above threshold,” IEEE J. Quantum Electron. 29, 1477–1487 (1993). [CrossRef]
  7. R. Hui, S. Benedetto, and I. Montrosset, “Optical frequency conversion using nearly degenerate four-wave mixing in a distributed-feedback semiconductor laser: theory and experiment,” J. Lightwave Technol. 11, 2026–2031 (1993). [CrossRef]
  8. H. Kuwatsuka, H. Shoji, M. Matsuda, and H. Ishikawa, “THz frequency conversion using nondegenerate four-wave mixing process in a lasing long-cavity λ/4-shifted DFB laser,” Electron. Lett. 31, 2108–2110 (1995). [CrossRef]
  9. J. Minch, C. S. Chang, and S. L. Chuang, “Wavelength conversion in distributed-feedback lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 569–576 (1997). [CrossRef]
  10. G. Grosskopf, R. Ludwig, and H. G. Weber, “140 Mbit/s DPSK transmission using an all-optical frequency converter with a 4000 Ghz conversion range,” Electron. Lett. 24, 1106–1107 (1988). [CrossRef]
  11. G. Grosskopf, L. Kuller, R. Ludwig, R. Schnabel, and H. G. Weber, “Semiconductor laser optical amplifiers in switching and distribution networks,” Opt. Quantum Electron. 21, S59–S79 (1989). [CrossRef]
  12. N. Schunk, G. Grosskopf, R. Ludwig, R. Schnabel, and H. G. Weber, “Frequency conversion by nearly-degenerate four-wave mixing in traveling-wave semiconductor laser amplifiers,” IEE Proc. Optoelectron. 137, 209–214 (1990). [CrossRef]
  13. N. Schunk, “All-optical frequency conversion in a traveling wave semiconductor laser amplifier,” IEEE J. Quantum Electron. 27, 1271–1279 (1991). [CrossRef]
  14. K. Inoue, “Tunable and selective wavelength conversion using fiber four-wave mixing with two pump lights,” IEEE Photon. Technol. Lett. 6, 1451–1453 (1994). [CrossRef]
  15. I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Improved performance of a wavelength converter based on dual pump four-wave mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett. 72, 2499–2501 (1998). [CrossRef]
  16. T. Morgan, J. Lacey, and R. Tucker, “Widely tunable four-wave mixing in semiconductor optical amplifiers with constant conversion efficiency,” IEEE Photon. Technol. Lett. 10, 1401–1403 (1998). [CrossRef]
  17. I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Performance of a reconfigurable wavelength convertor based on dual-pump four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 10, 1404–1406 (1998). [CrossRef]
  18. G. Hunziker, R. Paiella, D. Geraghty, K. Vahala, and U. Koren, “Polarization-independent wavelength conversion at 2.5 Gb/s by dual-pump four-wave mixing in a strained semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 8, 1633–1635 (1996). [CrossRef]
  19. P. O. Hedekvist, M. Karlsson, and P. A. Andrekson, “Polarization dependence and efficiency in a fiber four-wave mixing phase conjugator with orthogonal pump waves,” IEEE Photon. Technol. Lett. 8, 776–778 (1996). [CrossRef]
  20. M. Eiselt, R. Schnabel, and E. Dietrich, “Polarization insensitive frequency converter with the capability of chirp removal,” IEEE Photon. Technol. Lett. 10, 63–65 (1998). [CrossRef]
  21. I. Zacharopoulos, I. Tomkos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10, 352–354 (1998). [CrossRef]
  22. A. Mecozzi, G. Contestabile, F. Martelli, L. Graziani, A. D’Ottavi, P. Spano, R. Dall’Ara, J. Eckner, F. Girardin, and G. Gueskos, “Optical spectral inversion without frequency shift by four-wave mixing using two pumps with orthogonal polarization,” IEEE Photon. Technol. Lett. 10, 355–357 (1998). [CrossRef]
  23. A. Mecozzi, G. Contestabile, L. Graziani, F. Martelli, A. D’Ottavi, P. Spano, R. Dall’Ara, and J. Eckner, “Polarization-insensitive four-wave mixing in a semiconductor optical amplifier,” Appl. Phys. Lett. 72, 2651–2653 (1998). [CrossRef]
  24. G. Contestabile, F. Martelli, A. Mecozzi, L. Graziani, A. D’Ottavi, P. Spano, G. Gueskos, R. Dall’Ara, and J. Eckner, “Efficiency flattening and equalization of frequency up- and down-conversion using four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10, 1398–1400 (1998). [CrossRef]
  25. J. Minch, C. S. Chang, and S. L. Chuang, “Wavelength conversion using two-pump four-wave mixing in a double-moded distributed-feedback laser,” presented at Lasers and Electro-Optics Society 1997 Meeting of the IEEE, San Francisco, Calif., Nov. 10–13, 1997, paper MN3.
  26. W. Fang, A. Hsu, S. L. Chuang, T. Tanbun-Ek, and A. M. Sergent, “Measurement and modeling of distributed-feedback lasers with spatial hole burning,” IEEE J. Sel. Top. Quantum Electron. 2, 547–554 (1997). [CrossRef]
  27. P. Szczepanski, “Semiclassical theory of multimode operation of a distributed feedback laser,” IEEE J. Quantum Electron. 24, 1248–1257 (1988). [CrossRef]
  28. S. L. Chuang, Physics of Optoelectronic Devices (Wiley, New York, 1995).
  29. G. Agrawal, “Population pulsations and nondegenerate four-wave mixing in semiconductor lasers and amplifiers,” J. Opt. Soc. Am. B 5, 147–159 (1988). [CrossRef]
  30. W. Yee and K. Shore, “Nearly degenerate four-wave mixing in laser diodes with nonuniform longitudinal gain distribution,” J. Opt. Soc. Am. B 11, 1221–1228 (1994). [CrossRef]
  31. S. Iio, M. Suehiro, T. Hirata, and T. Hidaka, “Two-longitudinal mode laser diodes,” IEEE Photon. Technol. Lett. 7, 959–961 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited