OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 17, Iss. 1 — Jan. 1, 2000
  • pp: 99–102

Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators

Efim Khazanov, Nikolay Andreev, Alexey Babin, Alexander Kiselev, Oleg Palashov, and David H. Reitze  »View Author Affiliations

JOSA B, Vol. 17, Issue 1, pp. 99-102 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (252 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Light absorption in optical elements of Faraday rotators results in a nonuniform cross-sectional temperature distribution that leads to depolarization of laser radiation and, consequently, limits the isolation ratio of optical Faraday isolators. We show experimentally that the influence of the temperature dependence of the Verdet constant on the isolation ratio is negligibly small when compared with the influence of the photoelastic effect. We also present two novel methods of optical isolation that significantly reduce the depolarization caused by the photoelastic effect and increase the isolation ratio by two orders of magnitude in comparison with the conventional method. Our results confirm the possibility of magneto-optical glass-based Faraday isolators with isolation ratios of 30 dB for average laser powers of hundreds of watts.

© 2000 Optical Society of America

OCIS Codes
(140.6810) Lasers and laser optics : Thermal effects
(230.3240) Optical devices : Isolators
(230.5440) Optical devices : Polarization-selective devices

Efim Khazanov, Nikolay Andreev, Alexey Babin, Alexander Kiselev, Oleg Palashov, and David H. Reitze, "Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators," J. Opt. Soc. Am. B 17, 99-102 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. J. Shine, A. J. Alfrey, and R. L. Byer, “40-W cw, TEM00-mode, diode-laser-pumped, Nd-YAG miniature-slab laser,” Opt. Lett. 20, 459–461 (1995). [CrossRef] [PubMed]
  2. S. A. Payne, R. J. Beach, C. Bibeau, C. A. Ebbers, M. A. Emanuel, E. C. Honea, C. D. Marshall, R. H. Page, K. I. Schaffers, J. A. Skidmore, S. B. Sutton, and W. F. Krupke, “Diode arrays, crystals, and thermal management for solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 71–81 (1997). [CrossRef]
  3. A. N. Malshakov, G. A. Pasmanik, and A. K. Potemkin, “Comparative characteristics of magneto-optical materials,” Appl. Opt. 36, 6403–6410 (1997). [CrossRef]
  4. N. P. Barnes and L. P. Petway, “Variation of the Verdet constant with temperature of terbium gallium garnet,” J. Opt. Soc. Am. B 9, 1912–1915 (1992). [CrossRef]
  5. J. D. Foster and L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys. 41, 3656–3663 (1970). [CrossRef]
  6. E. Khazanov, O. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999). [CrossRef]
  7. E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999) [Kvant. Elektron. (Moscow) 26, 59–64 (1999) ]. [CrossRef]
  8. K. Shiraishi, F. Tajima, and S. Kawakami, “Compact Faraday rotator for an optical isolator using magnets arranged with alternating polarities,” Opt. Lett. 11, 82–84 (1986). [CrossRef] [PubMed]
  9. W. A. Clarkson, N. S. Felgate, and D. C. Hanna, “Simple method for reducing depolarization loss resulting from thermally induced birefringence in solid-state lasers,” Opt. Lett. 24, 820–822 (1999). [CrossRef]
  10. A. V. Mezenov, L. N. Soms, and A. I. Stepanov, Thermooptics of Solid-State Lasers (Mashinostroenie, Leningrad, 1986), p. 44.
  11. A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO—the laser interferometer gravitational wave observatory,” Science 256, 325–333 (1992). [CrossRef] [PubMed]
  12. A. Giazotto, “Wide-band measurement of gravitational waves—the Virgo Project,” Nuovo Cimento C 15, 955–971 (1992). [CrossRef]
  13. M. V. Plissi, K. A. Strain, C. I. Torrie, N. A. Robertson, S. Killbourn, S. Rowan, S. M. Twyford, H. Ward, K. D. Skeldon, and J. Hough, “Aspects of the suspension system for GEO 600,” Rev. Sci. Instrum. 69, 3055–3061 (1998). [CrossRef]
  14. K. Kawabe, “Status of TAMA project,” Class. Quantum Grav. 14, 1477–1480 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited