OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 17, Iss. 10 — Oct. 1, 2000
  • pp: 1657–1664

Second-harmonic generation by Nd3+:YAG/Cr4+:YAG-laser pulses with changing state of polarization

Alexander V. Kir’yanov, Vicente Aboites, and Igor V. Mel’nikov  »View Author Affiliations


JOSA B, Vol. 17, Issue 10, pp. 1657-1664 (2000)
http://dx.doi.org/10.1364/JOSAB.17.001657


View Full Text Article

Enhanced HTML    Acrobat PDF (212 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe the passive Q-switching regime of a neodymium laser that contains a Cr4+:YAG saturable absorber inside the cavity. Two configurations of the laser cavity are modeled: the cavity containing a partial polarizer as an additional unit and the microchip laser cavity in which the functions of an active element and saturable absorber are combined in a single piece of a Nd3+:YAG/Cr4+:YAG crystal with reflecting facets. It is shown that both lasers are able to generate a giant pulse with a changing state of polarization. Both the kinetics of the state of polarization of the pulse and its impact on second-harmonic generation are treated numerically. We find that the up-conversion efficiency can be enhanced and that harmonic-pulse compression can be obtained by means of the proper orientations of the intracavity polarizing elements, for the first configuration, or by choosing the polarization of the longitudinal pump and angular orientation of the doubling crystal, for the second one. The ability of the doubling crystal to analyze the state of polarization of pulses with nonlinearly changing polarization is discussed.

© 2000 Optical Society of America

OCIS Codes
(140.3540) Lasers and laser optics : Lasers, Q-switched
(140.3580) Lasers and laser optics : Lasers, solid-state
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.5940) Nonlinear optics : Self-action effects

Citation
Alexander V. Kir'yanov, Vicente Aboites, and Igor V. Mel'nikov, "Second-harmonic generation by Nd3+:YAG/Cr4+:YAG-laser pulses with changing state of polarization," J. Opt. Soc. Am. B 17, 1657-1664 (2000)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-17-10-1657


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Spariosu, W. Chen, R. Stultz, M. Birnbaum, and A. V. Shestakov, “Dual Q switching and laser action at 1.05 and 1.44 μm in a Nd3+:YAG–Cr4+:YAG oscillator at 300 K,” Opt. Lett. 18, 814–816 (1993). [CrossRef] [PubMed]
  2. H. J. Eichler, A. Haase, M. R. Kokta, and R. Menzel, “Cr4+:YAG as passive Q-switch for a Nd:YALO oscillator with an average repetition rate of 2.7 kHz, TEM00 mode and 13 W output,” Appl. Phys. B 58, 409–411 (1994). [CrossRef]
  3. Y. Shimony, Z. Burshtein, A. Ben-Amar Baranga, Y. Kalisky, and M. Strauss, “Repetitively Q-switching of a CW Nd:YAG laser using Cr4+:YAG saturable absorbers,” IEEE J. Quantum Electron. 32, 305–310 (1996). [CrossRef]
  4. A. Sennaroglu, “Continuous-wave power transmission and thermal lensing of a saturable absorber subject to excited-state absorption,” Appl. Opt. 38, 3334–3337 (1999). [CrossRef]
  5. H. Eilers, K. R. Hoffman, M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr, Ca:Y3AL5O12 crystals,” Appl. Phys. Lett. 61, 2958–2960 (1992). [CrossRef]
  6. N. N. Il’ichev, A. V. Kir’yanov, P. P. Pashinin, and S. M. Shpuga, “Investigation of nonlinear-absorption anisotropy in YAG:Cr4+,” JETP 78, 768–776 (1994).
  7. N. N. Il’ichev, A. V. Kir’yanov, P. P. Pashinin, and S. M. Shpuga, “Changes in the profile and state of polarization of a short light pulse (λ = 1.06 μm) during propagation in a Cr4+:YAG crystal,” Quantum Electron. 24, 771–776 (1994). [CrossRef]
  8. A. Brignon, “Anisotropic properties of pulsed four-wave mixing in Cr4+:YAG saturable absorbers,” J. Opt. Soc. Am. B 13, 2154–2163 (1996). [CrossRef]
  9. S. Camacho-Lopez, R. P. M. Green, G. J. Crofts, and M. J. Damzen, “Intensity-induced birefringence in Cr4+:YAG,” J. Mod. Opt. 44, 209–219 (1997). [CrossRef]
  10. N. N. Il’ichev, A. V. Kir’yanov, and P. P. Pashinin, “Model of passive Q switching taking account of the anisotropy of nonlinear absorption in a crystal switch with phototropic centers,” Quantum Electron. 28, 147–151 (1998). [CrossRef]
  11. I. V. Klimov, I. A. Shcherbakov, and V. B. Tsvetkov, “Control of the Nd-laser output by Cr-doped Q-switches,” Laser Phys. 8, 232–237 (1998).
  12. A. V. Kir’yanov, V. Aboites, and N. N. Il’ichev, “A polarization-bistable neodymium laser with a Cr4+:YAG passive switch under the weak resonant signal control,” Opt. Comm. 169, 309–315 (1999). [CrossRef]
  13. S. Zhou, K. K. Lee, Y. C. Chen, and S. Li, “Monolithic self-Q-switched Cr, Nd:YAG laser,” Opt. Lett. 18, 511–512 (1993). [CrossRef] [PubMed]
  14. N. N. Il’ichev, A. V. Kir’yanov, E. S. Gulyamova, and P. P. Pashinin, “Polarization of a neodymium laser with a passive switch based on a Cr4+:YAG crystal,” Quantum Electron. 28, 17–20 (1998). [CrossRef]
  15. J. J. Zayhowski and C. Dill III, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19, 1427–1429 (1994). [CrossRef] [PubMed]
  16. A. Agnesi, S. Dell’Acqua, C. Morello, G. Piccinno, G. C. Reali, and Z. Sun, “Diode-pumped neodymium lasers repetitively Q-switched by Cr4+:YAG solid-state saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 3, 45–52 (1997). [CrossRef]
  17. A. Agnesi, S. Dell’Acqua, E. Piccinini, G. Really, and G. Piccinno, “Efficient wavelength conversion with high-power passively Q-switched diode-pumped neodymium lasers,” IEEE J. Quantum Electron. 34, 1480–1484 (1998). [CrossRef]
  18. P. Peterson, A. Gavrielidis, M. P. Sharma, and T. Erneux, “Dynamics of passively Q-switched microchip lasers,” IEEE J. Quantum Electron. 35, 1247–1256 (1999). [CrossRef]
  19. M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switched by Cr4+:yttrium aluminum garnet absorbers,” Phys. Rev. A 60, 4052–4058 (1999). [CrossRef]
  20. N. Zheludev, S. Saltiel, and P. Yankov, “Second-harmonic generators as a new class of light polarizers and analyzers,” Sov. J. Quantum Electron. 17, 948–952 (1987). [CrossRef]
  21. R. Dalgliesh, A. D. May, and G. Stephan, “Polarization states of a single-mode (microchip) Nd3+:YAG laser—Part I: theory,” IEEE J. Quantum Electron. 34, 1485–1492 (1998). [CrossRef]
  22. R. Dalgliesh, A. D. May, and G. Stephan, “Polarization states of a single-mode (microchip) Nd3+:YAG laser—PartII. comparison of theory and experiment,” IEEE J. Quantum Electron. 34, 1493–1502 (1998). [CrossRef]
  23. R. V. Goidin, V. S. Kichuk, V. V. Kravtsov, G. D. Laptev, E. G. Lariontsev, and V. V. Firsov, “Influence of the pump polarisation on the characteristics of radiation of a ring Nd:YAG chip laser,” Quantum Electron. 28, 358–360 (1998). [CrossRef]
  24. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Berlin, 1991).
  25. N. N. Il’ichev, A. V. Kir’yanov, E. S. Gulyamova, and P. P. Pashinin, “Polarization characteristics of a neodymium laser passively Q-switched with a Cr4+:YAG crystal,” Quantum Electron. 27, 298–301 (1997). [CrossRef]
  26. N. N. Il’ichev, E. S. Gulyamova, and P. P. Pashinin, “Passive Q switching of a neodymium laser by a Cr4+:YAG crystal switch,” Quantum Electron. 27, 972–977 (1997). [CrossRef]
  27. Y. Wang and R. Dragila, “Efficient conversion of picosecond laser pulses into second-harmonic frequency using group-velocity dispersion,” Phys. Rev. A 41, 5645–5649 (1990). [CrossRef] [PubMed]
  28. Y. Wang and B. Luther-Davies, “Frequency-doubling pulse compressor for picosecond high-power neodymium laser pulses,” Opt. Lett. 17, 1459–1461 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited