OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 17, Iss. 10 — Oct. 1, 2000
  • pp: 1678–1684

Nonlinear coherent four-wave mixing in optical microscopy

Eric O. Potma, Wim P. de Boeij, and Douwe A. Wiersma  »View Author Affiliations


JOSA B, Vol. 17, Issue 10, pp. 1678-1684 (2000)
http://dx.doi.org/10.1364/JOSAB.17.001678


View Full Text Article

Acrobat PDF (274 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An analysis of the imaging properties of nonlinear coherent four-wave mixing optical microscopes is presented. The generation and propagation of coherent signals are considered under conditions of high numerical aperture with a model that circumvents the need to use the slowly varying envelope approximation. Calculations of coherent anti-Stokes Raman scattering signals show that diffraction effects play a prominent role in the spatial distribution of the coherent signal intensity. It is emphasized that, unlike for fluorescence microscopy, the detected signal is not a straightforward convolution of a point-spread function and the object but is shaped by the complex interplay of object size and coherent buildup dynamics.

© 2000 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(180.6900) Microscopy : Three-dimensional microscopy
(190.4180) Nonlinear optics : Multiphoton processes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(260.1960) Physical optics : Diffraction theory
(290.5910) Scattering : Scattering, stimulated Raman
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering

Citation
Eric O. Potma, Wim P. de Boeij, and Douwe A. Wiersma, "Nonlinear coherent four-wave mixing in optical microscopy," J. Opt. Soc. Am. B 17, 1678-1684 (2000)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-17-10-1678


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
  2. K. Svoboda, W. Denk, D. Kleinfeld, and D. W. Tank, “In vivo dendritic calcium dynamics in neocortical pyramidal neurons,” Nature 385, 161–165 (1997).
  3. P. J. Campagnola, M. Wei, A. Lewis, and L. M. Loew, “High-resolution nonlinear optical imaging of live cells by second harmonic generation,” Biophys. J. 77, 3341–3349 (1999).
  4. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
  5. M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. (Oxford) 191, 266–274 (1998).
  6. M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Scanning coherent anti-Stokes Raman microscope,” Opt. Lett. 7, 350–352 (1982).
  7. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
  8. M. Müller, J. Squier, C. A. de Lange, and G. J. Brakenhoff, “CARS microscopy with folded BoxCARS phasematching,” J. Microsc. (Oxford) 197, 150–158 (2000).
  9. M. D. Levenson and S. S. Kano, Introduction to Nonlinear Laser Spectroscopy (Academic, San Diego, Calif., 1987).
  10. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), pp. 47–49.
  11. T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282–3285 (1997).
  12. R. E. Teets, “CARS signals: phase matching, transverse modes and optical damage effects,” Appl. Opt. 25, 855–862 (1986).
  13. W. Kaabar and R. Devonshire, “A versatile model of CARS signal generation: optimum beam diameter ratios for different phase-matching geometries,” Chem. Phys. Lett. 186, 522–530 (1991).
  14. W. M. Shaub, A. B. Harvey, and G. C. Bjorklund, “Power generation in anti-Stokes Raman spectroscopy with focused laser beams,” J. Chem. Phys. 67, 2547–2550 (1977).
  15. S. Guha and J. Falk, “The effects of focusing on the efficiency of coherent anti-Stokes Raman scattering,” J. Chem. Phys. 75, 2599–2602 (1981).
  16. N. Bloembergen, Nonlinear Optics (Benjamin, New York, 1965).
  17. G. L. Eesley, Coherent Raman Spectroscopy (Pergamon, New York, 1981), p. 25.
  18. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, 1998), p. 437.
  19. T. Wilson and C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984), pp. 12–26.
  20. R. N. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1986), pp. 244–250.
  21. P. J. Shaw in Handbook of Biological Confocal Microscopy, J. Pawley, ed. (Plenum, New York, 1995), p. 373.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited